class AzureOpenAi { constructor() { const { OpenAIClient, AzureKeyCredential } = require("@azure/openai"); const openai = new OpenAIClient( process.env.AZURE_OPENAI_ENDPOINT, new AzureKeyCredential(process.env.AZURE_OPENAI_KEY) ); this.openai = openai; } isValidChatModel(_modelName = "") { // The Azure user names their "models" as deployments and they can be any name // so we rely on the user to put in the correct deployment as only they would // know it. return true; } async isSafe(_input = "") { // Not implemented by Azure OpenAI so must be stubbed return { safe: true, reasons: [] }; } async sendChat(chatHistory = [], prompt, workspace = {}) { const model = process.env.OPEN_MODEL_PREF; if (!model) throw new Error( "No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5." ); const textResponse = await this.openai .getChatCompletions( model, [ { role: "system", content: "" }, ...chatHistory, { role: "user", content: prompt }, ], { temperature: Number(workspace?.openAiTemp ?? 0.7), n: 1, } ) .then((res) => { if (!res.hasOwnProperty("choices")) throw new Error("OpenAI chat: No results!"); if (res.choices.length === 0) throw new Error("OpenAI chat: No results length!"); return res.choices[0].message.content; }) .catch((error) => { console.log(error); throw new Error( `AzureOpenAI::getChatCompletions failed with: ${error.message}` ); }); return textResponse; } async getChatCompletion(messages = [], { temperature = 0.7 }) { const model = process.env.OPEN_MODEL_PREF; if (!model) throw new Error( "No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5." ); const data = await this.openai.getChatCompletions(model, messages, { temperature, }); if (!data.hasOwnProperty("choices")) return null; return data.choices[0].message.content; } async embedTextInput(textInput) { const result = await this.embedChunks(textInput); return result?.[0] || []; } async embedChunks(textChunks = []) { const textEmbeddingModel = process.env.EMBEDDING_MODEL_PREF || "text-embedding-ada-002"; if (!textEmbeddingModel) throw new Error( "No EMBEDDING_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an embedding model." ); const { data = [] } = await this.openai.getEmbeddings( textEmbeddingModel, textChunks ); return data.length > 0 && data.every((embd) => embd.hasOwnProperty("embedding")) ? data.map((embd) => embd.embedding) : null; } } module.exports = { AzureOpenAi, };