const { chatPrompt } = require("../../chats"); const { StringOutputParser } = require("langchain/schema/output_parser"); const { writeResponseChunk } = require("../../chats/stream"); // Docs: https://github.com/jmorganca/ollama/blob/main/docs/api.md class OllamaAILLM { constructor(embedder = null, modelPreference = null) { if (!process.env.OLLAMA_BASE_PATH) throw new Error("No Ollama Base Path was set."); this.basePath = process.env.OLLAMA_BASE_PATH; this.model = modelPreference || process.env.OLLAMA_MODEL_PREF; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; if (!embedder) throw new Error( "INVALID OLLAMA SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Ollama as your LLM." ); this.embedder = embedder; this.defaultTemp = 0.7; } #ollamaClient({ temperature = 0.07 }) { const { ChatOllama } = require("langchain/chat_models/ollama"); return new ChatOllama({ baseUrl: this.basePath, model: this.model, temperature, }); } // For streaming we use Langchain's wrapper to handle weird chunks // or otherwise absorb headaches that can arise from Ollama models #convertToLangchainPrototypes(chats = []) { const { HumanMessage, SystemMessage, AIMessage, } = require("langchain/schema"); const langchainChats = []; const roleToMessageMap = { system: SystemMessage, user: HumanMessage, assistant: AIMessage, }; for (const chat of chats) { if (!roleToMessageMap.hasOwnProperty(chat.role)) continue; const MessageClass = roleToMessageMap[chat.role]; langchainChats.push(new MessageClass({ content: chat.content })); } return langchainChats; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamChat" in this && "streamGetChatCompletion" in this; } // Ensure the user set a value for the token limit // and if undefined - assume 4096 window. promptWindowLimit() { const limit = process.env.OLLAMA_MODEL_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No Ollama token context limit was set."); return Number(limit); } async isValidChatCompletionModel(_ = "") { return true; } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; } async isSafe(_input = "") { // Not implemented so must be stubbed return { safe: true, reasons: [] }; } async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) { const messages = await this.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: prompt, chatHistory, }, rawHistory ); const model = this.#ollamaClient({ temperature: Number(workspace?.openAiTemp ?? this.defaultTemp), }); const textResponse = await model .pipe(new StringOutputParser()) .invoke(this.#convertToLangchainPrototypes(messages)); if (!textResponse.length) throw new Error(`Ollama::sendChat text response was empty.`); return textResponse; } async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) { const messages = await this.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: prompt, chatHistory, }, rawHistory ); const model = this.#ollamaClient({ temperature: Number(workspace?.openAiTemp ?? this.defaultTemp), }); const stream = await model .pipe(new StringOutputParser()) .stream(this.#convertToLangchainPrototypes(messages)); return stream; } async getChatCompletion(messages = null, { temperature = 0.7 }) { const model = this.#ollamaClient({ temperature }); const textResponse = await model .pipe(new StringOutputParser()) .invoke(this.#convertToLangchainPrototypes(messages)); if (!textResponse.length) throw new Error(`Ollama::getChatCompletion text response was empty.`); return textResponse; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { const model = this.#ollamaClient({ temperature }); const stream = await model .pipe(new StringOutputParser()) .stream(this.#convertToLangchainPrototypes(messages)); return stream; } handleStream(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; return new Promise(async (resolve) => { let fullText = ""; for await (const chunk of stream) { if (chunk === undefined) throw new Error( "Stream returned undefined chunk. Aborting reply - check model provider logs." ); const content = chunk.hasOwnProperty("content") ? chunk.content : chunk; fullText += content; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: content, close: false, error: false, }); } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); }); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { OllamaAILLM, };