const { v4: uuidv4 } = require("uuid"); const { WorkspaceChats } = require("../../models/workspaceChats"); const { getVectorDbClass, getLLMProvider } = require("../helpers"); const { grepCommand, recentChatHistory, VALID_COMMANDS, chatPrompt, } = require("."); function writeResponseChunk(response, data) { response.write(`data: ${JSON.stringify(data)}\n\n`); return; } async function streamChatWithWorkspace( response, workspace, message, chatMode = "chat", user = null ) { const uuid = uuidv4(); const command = grepCommand(message); if (!!command && Object.keys(VALID_COMMANDS).includes(command)) { const data = await VALID_COMMANDS[command](workspace, message, uuid, user); writeResponseChunk(response, data); return; } const LLMConnector = getLLMProvider(); const VectorDb = getVectorDbClass(); const { safe, reasons = [] } = await LLMConnector.isSafe(message); if (!safe) { writeResponseChunk(response, { id: uuid, type: "abort", textResponse: null, sources: [], close: true, error: `This message was moderated and will not be allowed. Violations for ${reasons.join( ", " )} found.`, }); return; } const messageLimit = workspace?.openAiHistory || 20; const hasVectorizedSpace = await VectorDb.hasNamespace(workspace.slug); const embeddingsCount = await VectorDb.namespaceCount(workspace.slug); if (!hasVectorizedSpace || embeddingsCount === 0) { // If there are no embeddings - chat like a normal LLM chat interface. return await streamEmptyEmbeddingChat({ response, uuid, user, message, workspace, messageLimit, LLMConnector, }); } let completeText; const { rawHistory, chatHistory } = await recentChatHistory( user, workspace, messageLimit, chatMode ); const { contextTexts = [], sources = [], message: error, } = await VectorDb.performSimilaritySearch({ namespace: workspace.slug, input: message, LLMConnector, similarityThreshold: workspace?.similarityThreshold, }); // Failed similarity search. if (!!error) { writeResponseChunk(response, { id: uuid, type: "abort", textResponse: null, sources: [], close: true, error, }); return; } // Compress message to ensure prompt passes token limit with room for response // and build system messages based on inputs and history. const messages = await LLMConnector.compressMessages( { systemPrompt: chatPrompt(workspace), userPrompt: message, contextTexts, chatHistory, }, rawHistory ); // If streaming is not explicitly enabled for connector // we do regular waiting of a response and send a single chunk. if (LLMConnector.streamingEnabled() !== true) { console.log( `\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.` ); completeText = await LLMConnector.getChatCompletion(messages, { temperature: workspace?.openAiTemp ?? 0.7, }); writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: completeText, close: true, error: false, }); } else { const stream = await LLMConnector.streamGetChatCompletion(messages, { temperature: workspace?.openAiTemp ?? 0.7, }); completeText = await handleStreamResponses(response, stream, { uuid, sources, }); } await WorkspaceChats.new({ workspaceId: workspace.id, prompt: message, response: { text: completeText, sources, type: chatMode }, user, }); return; } async function streamEmptyEmbeddingChat({ response, uuid, user, message, workspace, messageLimit, LLMConnector, }) { let completeText; const { rawHistory, chatHistory } = await recentChatHistory( user, workspace, messageLimit ); // If streaming is not explicitly enabled for connector // we do regular waiting of a response and send a single chunk. if (LLMConnector.streamingEnabled() !== true) { console.log( `\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.` ); completeText = await LLMConnector.sendChat( chatHistory, message, workspace, rawHistory ); writeResponseChunk(response, { uuid, type: "textResponseChunk", textResponse: completeText, sources: [], close: true, error: false, }); } else { const stream = await LLMConnector.streamChat( chatHistory, message, workspace, rawHistory ); completeText = await handleStreamResponses(response, stream, { uuid, sources: [], }); } await WorkspaceChats.new({ workspaceId: workspace.id, prompt: message, response: { text: completeText, sources: [], type: "chat" }, user, }); return; } function handleStreamResponses(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; return new Promise((resolve) => { let fullText = ""; let chunk = ""; stream.data.on("data", (data) => { const lines = data ?.toString() ?.split("\n") .filter((line) => line.trim() !== ""); for (const line of lines) { const message = chunk + line.replace(/^data: /, ""); // JSON chunk is incomplete and has not ended yet // so we need to stitch it together. You would think JSON // chunks would only come complete - but they don't! if (message.slice(-3) !== "}]}") { chunk += message; continue; } else { chunk = ""; } if (message == "[DONE]") { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } else { let finishReason; let token = ""; try { const json = JSON.parse(message); token = json?.choices?.[0]?.delta?.content; finishReason = json?.choices?.[0]?.finish_reason; } catch { continue; } if (token) { fullText += token; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: token, close: false, error: false, }); } if (finishReason !== null) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); resolve(fullText); } } } }); }); } module.exports = { streamChatWithWorkspace, writeResponseChunk, };