function getVectorDbClass() { const vectorSelection = process.env.VECTOR_DB || "lancedb"; switch (vectorSelection) { case "pinecone": const { Pinecone } = require("../vectorDbProviders/pinecone"); return Pinecone; case "chroma": const { Chroma } = require("../vectorDbProviders/chroma"); return Chroma; case "lancedb": const { LanceDb } = require("../vectorDbProviders/lance"); return LanceDb; case "weaviate": const { Weaviate } = require("../vectorDbProviders/weaviate"); return Weaviate; case "qdrant": const { QDrant } = require("../vectorDbProviders/qdrant"); return QDrant; case "milvus": const { Milvus } = require("../vectorDbProviders/milvus"); return Milvus; case "zilliz": const { Zilliz } = require("../vectorDbProviders/zilliz"); return Zilliz; case "astra": const { AstraDB } = require("../vectorDbProviders/astra"); return AstraDB; default: throw new Error("ENV: No VECTOR_DB value found in environment!"); } } function getLLMProvider({ provider = null, model = null } = {}) { const LLMSelection = provider ?? process.env.LLM_PROVIDER ?? "openai"; const embedder = getEmbeddingEngineSelection(); switch (LLMSelection) { case "openai": const { OpenAiLLM } = require("../AiProviders/openAi"); return new OpenAiLLM(embedder, model); case "azure": const { AzureOpenAiLLM } = require("../AiProviders/azureOpenAi"); return new AzureOpenAiLLM(embedder, model); case "anthropic": const { AnthropicLLM } = require("../AiProviders/anthropic"); return new AnthropicLLM(embedder, model); case "gemini": const { GeminiLLM } = require("../AiProviders/gemini"); return new GeminiLLM(embedder, model); case "lmstudio": const { LMStudioLLM } = require("../AiProviders/lmStudio"); return new LMStudioLLM(embedder, model); case "localai": const { LocalAiLLM } = require("../AiProviders/localAi"); return new LocalAiLLM(embedder, model); case "ollama": const { OllamaAILLM } = require("../AiProviders/ollama"); return new OllamaAILLM(embedder, model); case "togetherai": const { TogetherAiLLM } = require("../AiProviders/togetherAi"); return new TogetherAiLLM(embedder, model); case "perplexity": const { PerplexityLLM } = require("../AiProviders/perplexity"); return new PerplexityLLM(embedder, model); case "openrouter": const { OpenRouterLLM } = require("../AiProviders/openRouter"); return new OpenRouterLLM(embedder, model); case "mistral": const { MistralLLM } = require("../AiProviders/mistral"); return new MistralLLM(embedder, model); case "native": const { NativeLLM } = require("../AiProviders/native"); return new NativeLLM(embedder, model); case "huggingface": const { HuggingFaceLLM } = require("../AiProviders/huggingface"); return new HuggingFaceLLM(embedder, model); case "groq": const { GroqLLM } = require("../AiProviders/groq"); return new GroqLLM(embedder, model); case "koboldcpp": const { KoboldCPPLLM } = require("../AiProviders/koboldCPP"); return new KoboldCPPLLM(embedder, model); case "textgenwebui": const { TextGenWebUILLM } = require("../AiProviders/textGenWebUI"); return new TextGenWebUILLM(embedder, model); case "cohere": const { CohereLLM } = require("../AiProviders/cohere"); return new CohereLLM(embedder, model); case "litellm": const { LiteLLM } = require("../AiProviders/liteLLM"); return new LiteLLM(embedder, model); case "generic-openai": const { GenericOpenAiLLM } = require("../AiProviders/genericOpenAi"); return new GenericOpenAiLLM(embedder, model); default: throw new Error( `ENV: No valid LLM_PROVIDER value found in environment! Using ${process.env.LLM_PROVIDER}` ); } } function getEmbeddingEngineSelection() { const { NativeEmbedder } = require("../EmbeddingEngines/native"); const engineSelection = process.env.EMBEDDING_ENGINE; switch (engineSelection) { case "openai": const { OpenAiEmbedder } = require("../EmbeddingEngines/openAi"); return new OpenAiEmbedder(); case "azure": const { AzureOpenAiEmbedder, } = require("../EmbeddingEngines/azureOpenAi"); return new AzureOpenAiEmbedder(); case "localai": const { LocalAiEmbedder } = require("../EmbeddingEngines/localAi"); return new LocalAiEmbedder(); case "ollama": const { OllamaEmbedder } = require("../EmbeddingEngines/ollama"); return new OllamaEmbedder(); case "native": return new NativeEmbedder(); case "lmstudio": const { LMStudioEmbedder } = require("../EmbeddingEngines/lmstudio"); return new LMStudioEmbedder(); case "cohere": const { CohereEmbedder } = require("../EmbeddingEngines/cohere"); return new CohereEmbedder(); case "voyageai": const { VoyageAiEmbedder } = require("../EmbeddingEngines/voyageAi"); return new VoyageAiEmbedder(); case "litellm": const { LiteLLMEmbedder } = require("../EmbeddingEngines/liteLLM"); return new LiteLLMEmbedder(); case "generic-openai": const { GenericOpenAiEmbedder, } = require("../EmbeddingEngines/genericOpenAi"); return new GenericOpenAiEmbedder(); default: return new NativeEmbedder(); } } // Some models have lower restrictions on chars that can be encoded in a single pass // and by default we assume it can handle 1,000 chars, but some models use work with smaller // chars so here we can override that value when embedding information. function maximumChunkLength() { if ( !!process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH && !isNaN(process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH) && Number(process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH) > 1 ) return Number(process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH); return 1_000; } function toChunks(arr, size) { return Array.from({ length: Math.ceil(arr.length / size) }, (_v, i) => arr.slice(i * size, i * size + size) ); } module.exports = { getEmbeddingEngineSelection, maximumChunkLength, getVectorDbClass, getLLMProvider, toChunks, };