const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { handleDefaultStreamResponseV2, } = require("../../helpers/chat/responses"); class GroqLLM { constructor(embedder = null, modelPreference = null) { const { OpenAI: OpenAIApi } = require("openai"); if (!process.env.GROQ_API_KEY) throw new Error("No Groq API key was set."); this.openai = new OpenAIApi({ baseURL: "https://api.groq.com/openai/v1", apiKey: process.env.GROQ_API_KEY, }); this.model = modelPreference || process.env.GROQ_MODEL_PREF || "llama-3.1-8b-instant"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } promptWindowLimit() { switch (this.model) { case "gemma2-9b-it": case "gemma-7b-it": case "llama3-70b-8192": case "llama3-8b-8192": return 8192; case "llama-3.1-70b-versatile": case "llama-3.1-8b-instant": return 131072; case "mixtral-8x7b-32768": return 32768; default: return 8192; } } async isValidChatCompletionModel(modelName = "") { return !!modelName; // name just needs to exist } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; } async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `GroqAI:chatCompletion: ${this.model} is not valid for chat completion!` ); const result = await this.openai.chat.completions .create({ model: this.model, messages, temperature, }) .catch((e) => { throw new Error(e.message); }); if (!result.hasOwnProperty("choices") || result.choices.length === 0) return null; return result.choices[0].message.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `GroqAI:streamChatCompletion: ${this.model} is not valid for chat completion!` ); const streamRequest = await this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }); return streamRequest; } handleStream(response, stream, responseProps) { return handleDefaultStreamResponseV2(response, stream, responseProps); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { GroqLLM, };