const fs = require("fs"); const path = require("path"); const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { writeResponseChunk, clientAbortedHandler, } = require("../../helpers/chat/responses"); // Docs: https://js.langchain.com/docs/integrations/chat/llama_cpp const ChatLlamaCpp = (...args) => import("@langchain/community/chat_models/llama_cpp").then( ({ ChatLlamaCpp }) => new ChatLlamaCpp(...args) ); class NativeLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.NATIVE_LLM_MODEL_PREF) throw new Error("No local Llama model was set."); this.model = modelPreference || process.env.NATIVE_LLM_MODEL_PREF || null; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.cacheDir = path.resolve( process.env.STORAGE_DIR ? path.resolve(process.env.STORAGE_DIR, "models", "downloaded") : path.resolve(__dirname, `../../../storage/models/downloaded`) ); // Make directory when it does not exist in existing installations if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir); this.defaultTemp = 0.7; } async #initializeLlamaModel(temperature = 0.7) { const modelPath = path.join(this.cacheDir, this.model); if (!fs.existsSync(modelPath)) throw new Error( `Local Llama model ${this.model} was not found in storage!` ); global.llamaModelInstance = await ChatLlamaCpp({ modelPath, temperature, useMlock: true, }); } // If the model has been loaded once, it is in the memory now // so we can skip re-loading it and instead go straight to inference. // Note: this will break temperature setting hopping between workspaces with different temps. async #llamaClient({ temperature = 0.7 }) { if (global.llamaModelInstance) return global.llamaModelInstance; await this.#initializeLlamaModel(temperature); return global.llamaModelInstance; } #convertToLangchainPrototypes(chats = []) { const { HumanMessage, SystemMessage, AIMessage, } = require("@langchain/core/messages"); const langchainChats = []; const roleToMessageMap = { system: SystemMessage, user: HumanMessage, assistant: AIMessage, }; for (const chat of chats) { if (!roleToMessageMap.hasOwnProperty(chat.role)) continue; const MessageClass = roleToMessageMap[chat.role]; langchainChats.push(new MessageClass({ content: chat.content })); } return langchainChats; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } // Ensure the user set a value for the token limit promptWindowLimit() { const limit = process.env.NATIVE_LLM_MODEL_TOKEN_LIMIT || 4096; if (!limit || isNaN(Number(limit))) throw new Error("No NativeAI token context limit was set."); return Number(limit); } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; } async getChatCompletion(messages = null, { temperature = 0.7 }) { const model = await this.#llamaClient({ temperature }); const response = await model.call(messages); return response.content; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { const model = await this.#llamaClient({ temperature }); const responseStream = await model.stream(messages); return responseStream; } handleStream(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; return new Promise(async (resolve) => { let fullText = ""; // Establish listener to early-abort a streaming response // in case things go sideways or the user does not like the response. // We preserve the generated text but continue as if chat was completed // to preserve previously generated content. const handleAbort = () => clientAbortedHandler(resolve, fullText); response.on("close", handleAbort); for await (const chunk of stream) { if (chunk === undefined) throw new Error( "Stream returned undefined chunk. Aborting reply - check model provider logs." ); const content = chunk.hasOwnProperty("content") ? chunk.content : chunk; fullText += content; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: content, close: false, error: false, }); } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); response.removeListener("close", handleAbort); resolve(fullText); }); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); const compressedMessages = await messageArrayCompressor( this, messageArray, rawHistory ); return this.#convertToLangchainPrototypes(compressedMessages); } } module.exports = { NativeLLM, };