mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-11 09:10:13 +01:00
bf435b2861
resolves #1230
113 lines
3.3 KiB
JavaScript
113 lines
3.3 KiB
JavaScript
const { maximumChunkLength } = require("../../helpers");
|
|
|
|
class LMStudioEmbedder {
|
|
constructor() {
|
|
if (!process.env.EMBEDDING_BASE_PATH)
|
|
throw new Error("No embedding base path was set.");
|
|
if (!process.env.EMBEDDING_MODEL_PREF)
|
|
throw new Error("No embedding model was set.");
|
|
this.basePath = `${process.env.EMBEDDING_BASE_PATH}/embeddings`;
|
|
this.model = process.env.EMBEDDING_MODEL_PREF;
|
|
|
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
|
this.maxConcurrentChunks = 1;
|
|
this.embeddingMaxChunkLength = maximumChunkLength();
|
|
}
|
|
|
|
log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
async #isAlive() {
|
|
return await fetch(`${this.basePath}/models`, {
|
|
method: "HEAD",
|
|
})
|
|
.then((res) => res.ok)
|
|
.catch((e) => {
|
|
this.log(e.message);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(
|
|
Array.isArray(textInput) ? textInput : [textInput]
|
|
);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
if (!(await this.#isAlive()))
|
|
throw new Error(
|
|
`LMStudio service could not be reached. Is LMStudio running?`
|
|
);
|
|
|
|
this.log(
|
|
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
|
);
|
|
|
|
// LMStudio will drop all queued requests now? So if there are many going on
|
|
// we need to do them sequentially or else only the first resolves and the others
|
|
// get dropped or go unanswered >:(
|
|
let results = [];
|
|
let hasError = false;
|
|
for (const chunk of textChunks) {
|
|
if (hasError) break; // If an error occurred don't continue and exit early.
|
|
results.push(
|
|
await fetch(this.basePath, {
|
|
method: "POST",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({
|
|
model: this.model,
|
|
input: chunk,
|
|
}),
|
|
})
|
|
.then((res) => res.json())
|
|
.then((json) => {
|
|
const embedding = json.data[0].embedding;
|
|
if (!Array.isArray(embedding) || !embedding.length)
|
|
throw {
|
|
type: "EMPTY_ARR",
|
|
message: "The embedding was empty from LMStudio",
|
|
};
|
|
return { data: embedding, error: null };
|
|
})
|
|
.catch((error) => {
|
|
hasError = true;
|
|
return { data: [], error };
|
|
})
|
|
);
|
|
}
|
|
|
|
// Accumulate errors from embedding.
|
|
// If any are present throw an abort error.
|
|
const errors = results
|
|
.filter((res) => !!res.error)
|
|
.map((res) => res.error)
|
|
.flat();
|
|
|
|
if (errors.length > 0) {
|
|
let uniqueErrors = new Set();
|
|
console.log(errors);
|
|
errors.map((error) =>
|
|
uniqueErrors.add(`[${error.type}]: ${error.message}`)
|
|
);
|
|
|
|
if (errors.length > 0)
|
|
throw new Error(
|
|
`LMStudio Failed to embed: ${Array.from(uniqueErrors).join(", ")}`
|
|
);
|
|
}
|
|
|
|
const data = results.map((res) => res?.data || []);
|
|
return data.length > 0 ? data : null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
LMStudioEmbedder,
|
|
};
|