mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-16 03:10:31 +01:00
dc4ad6b5a9
* wip bg workers for live document sync * Add ability to re-embed specific documents across many workspaces via background queue bgworkser is gated behind expieremental system setting flag that needs to be explictly enabled UI for watching/unwatching docments that are embedded. TODO: UI to easily manage all bg tasks and see run results TODO: UI to enable this feature and background endpoints to manage it * create frontend views and paths Move elements to correct experimental scope * update migration to delete runs on removal of watched document * Add watch support to YouTube transcripts (#1716) * Add watch support to YouTube transcripts refactor how sync is done for supported types * Watch specific files in Confluence space (#1718) Add failure-prune check for runs * create tmp workflow modifications for beta image * create tmp workflow modifications for beta image * create tmp workflow modifications for beta image * dual build update copy of alert modals * update job interval * Add support for live-sync of Github files * update copy for document sync feature * hide Experimental features from UI * update docs links * [FEAT] Implement new settings menu for experimental features (#1735) * implement new settings menu for experimental features * remove unused context save bar --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * dont run job on boot * unset workflow changes * Add persistent encryption service Relay key to collector so persistent encryption can be used Encrypt any private data in chunkSources used for replay during resync jobs * update jsDOC * Linting and organization * update modal copy for feature --------- Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
297 lines
11 KiB
JavaScript
297 lines
11 KiB
JavaScript
const { Pinecone } = require("@pinecone-database/pinecone");
|
|
const { TextSplitter } = require("../../TextSplitter");
|
|
const { SystemSettings } = require("../../../models/systemSettings");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const { toChunks, getEmbeddingEngineSelection } = require("../../helpers");
|
|
const { sourceIdentifier } = require("../../chats");
|
|
|
|
const PineconeDB = {
|
|
name: "Pinecone",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "pinecone")
|
|
throw new Error("Pinecone::Invalid ENV settings");
|
|
|
|
const client = new Pinecone({
|
|
apiKey: process.env.PINECONE_API_KEY,
|
|
});
|
|
|
|
const pineconeIndex = client.Index(process.env.PINECONE_INDEX);
|
|
const { status } = await client.describeIndex(process.env.PINECONE_INDEX);
|
|
|
|
if (!status.ready) throw new Error("Pinecone::Index not ready.");
|
|
return { client, pineconeIndex, indexName: process.env.PINECONE_INDEX };
|
|
},
|
|
totalVectors: async function () {
|
|
const { pineconeIndex } = await this.connect();
|
|
const { namespaces } = await pineconeIndex.describeIndexStats();
|
|
|
|
return Object.values(namespaces).reduce(
|
|
(a, b) => a + (b?.recordCount || 0),
|
|
0
|
|
);
|
|
},
|
|
namespaceCount: async function (_namespace = null) {
|
|
const { pineconeIndex } = await this.connect();
|
|
const namespace = await this.namespace(pineconeIndex, _namespace);
|
|
return namespace?.recordCount || 0;
|
|
},
|
|
similarityResponse: async function (
|
|
index,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold = 0.25,
|
|
topN = 4,
|
|
filterIdentifiers = []
|
|
) {
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
scores: [],
|
|
};
|
|
|
|
const pineconeNamespace = index.namespace(namespace);
|
|
const response = await pineconeNamespace.query({
|
|
vector: queryVector,
|
|
topK: topN,
|
|
includeMetadata: true,
|
|
});
|
|
|
|
response.matches.forEach((match) => {
|
|
if (match.score < similarityThreshold) return;
|
|
if (filterIdentifiers.includes(sourceIdentifier(match.metadata))) {
|
|
console.log(
|
|
"Pinecone: A source was filtered from context as it's parent document is pinned."
|
|
);
|
|
return;
|
|
}
|
|
|
|
result.contextTexts.push(match.metadata.text);
|
|
result.sourceDocuments.push(match);
|
|
result.scores.push(match.score);
|
|
});
|
|
|
|
return result;
|
|
},
|
|
namespace: async function (index, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const { namespaces } = await index.describeIndexStats();
|
|
return namespaces.hasOwnProperty(namespace) ? namespaces[namespace] : null;
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { pineconeIndex } = await this.connect();
|
|
return await this.namespaceExists(pineconeIndex, namespace);
|
|
},
|
|
namespaceExists: async function (index, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const { namespaces } = await index.describeIndexStats();
|
|
return namespaces.hasOwnProperty(namespace);
|
|
},
|
|
deleteVectorsInNamespace: async function (index, namespace = null) {
|
|
const pineconeNamespace = index.namespace(namespace);
|
|
await pineconeNamespace.deleteAll();
|
|
return true;
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null,
|
|
skipCache = false
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
const { pageContent, docId, ...metadata } = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
if (!skipCache) {
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { pineconeIndex } = await this.connect();
|
|
const pineconeNamespace = pineconeIndex.namespace(namespace);
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
|
|
for (const chunk of chunks) {
|
|
// Before sending to Pinecone and saving the records to our db
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
const newChunks = chunk.map((chunk) => {
|
|
const id = uuidv4();
|
|
documentVectors.push({ docId, vectorId: id });
|
|
return { ...chunk, id };
|
|
});
|
|
await pineconeNamespace.upsert([...newChunks]);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return { vectorized: true, error: null };
|
|
}
|
|
}
|
|
|
|
// If we are here then we are going to embed and store a novel document.
|
|
// We have to do this manually as opposed to using LangChains `PineconeStore.fromDocuments`
|
|
// because we then cannot atomically control our namespace to granularly find/remove documents
|
|
// from vectordb.
|
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L167
|
|
const EmbedderEngine = getEmbeddingEngineSelection();
|
|
const textSplitter = new TextSplitter({
|
|
chunkSize: TextSplitter.determineMaxChunkSize(
|
|
await SystemSettings.getValueOrFallback({
|
|
label: "text_splitter_chunk_size",
|
|
}),
|
|
EmbedderEngine?.embeddingMaxChunkLength
|
|
),
|
|
chunkOverlap: await SystemSettings.getValueOrFallback(
|
|
{ label: "text_splitter_chunk_overlap" },
|
|
20
|
|
),
|
|
chunkHeaderMeta: {
|
|
sourceDocument: metadata?.title,
|
|
published: metadata?.published || "unknown",
|
|
},
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const vectorValues = await EmbedderEngine.embedChunks(textChunks);
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
const vectorRecord = {
|
|
id: uuidv4(),
|
|
values: vector,
|
|
// [DO NOT REMOVE]
|
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
|
|
metadata: { ...metadata, text: textChunks[i] },
|
|
};
|
|
|
|
vectors.push(vectorRecord);
|
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
|
}
|
|
} else {
|
|
throw new Error(
|
|
"Could not embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
const { pineconeIndex } = await this.connect();
|
|
const pineconeNamespace = pineconeIndex.namespace(namespace);
|
|
console.log("Inserting vectorized chunks into Pinecone.");
|
|
for (const chunk of toChunks(vectors, 100)) {
|
|
chunks.push(chunk);
|
|
await pineconeNamespace.upsert([...chunk]);
|
|
}
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return { vectorized: true, error: null };
|
|
} catch (e) {
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return { vectorized: false, error: e.message };
|
|
}
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace))) return;
|
|
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
|
|
|
const pineconeNamespace = pineconeIndex.namespace(namespace);
|
|
for (const batchOfVectorIds of toChunks(vectorIds, 1000)) {
|
|
await pineconeNamespace.deleteMany(batchOfVectorIds);
|
|
}
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
await DocumentVectors.deleteIds(indexes);
|
|
return true;
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
const stats = await this.namespace(pineconeIndex, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
const details = await this.namespace(pineconeIndex, namespace);
|
|
await this.deleteVectorsInNamespace(pineconeIndex, namespace);
|
|
return {
|
|
message: `Namespace ${namespace} was deleted along with ${details.vectorCount} vectors.`,
|
|
};
|
|
},
|
|
performSimilaritySearch: async function ({
|
|
namespace = null,
|
|
input = "",
|
|
LLMConnector = null,
|
|
similarityThreshold = 0.25,
|
|
topN = 4,
|
|
filterIdentifiers = [],
|
|
}) {
|
|
if (!namespace || !input || !LLMConnector)
|
|
throw new Error("Invalid request to performSimilaritySearch.");
|
|
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace)))
|
|
throw new Error(
|
|
"Invalid namespace - has it been collected and populated yet?"
|
|
);
|
|
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
pineconeIndex,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold,
|
|
topN,
|
|
filterIdentifiers
|
|
);
|
|
|
|
const sources = sourceDocuments.map((metadata, i) => {
|
|
return { ...metadata, text: contextTexts[i] };
|
|
});
|
|
return {
|
|
contextTexts,
|
|
sources: this.curateSources(sources),
|
|
message: false,
|
|
};
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
const { metadata = {} } = source;
|
|
if (Object.keys(metadata).length > 0) {
|
|
documents.push({
|
|
...metadata,
|
|
...(source.hasOwnProperty("pageContent")
|
|
? { text: source.pageContent }
|
|
: {}),
|
|
});
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
};
|
|
|
|
module.exports.Pinecone = PineconeDB;
|