mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-16 03:10:31 +01:00
0b845fbb1c
Add type defs to helpers
165 lines
4.9 KiB
JavaScript
165 lines
4.9 KiB
JavaScript
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
writeResponseChunk,
|
|
clientAbortedHandler,
|
|
} = require("../../helpers/chat/responses");
|
|
|
|
class AzureOpenAiLLM {
|
|
constructor(embedder = null, _modelPreference = null) {
|
|
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
|
|
if (!process.env.AZURE_OPENAI_ENDPOINT)
|
|
throw new Error("No Azure API endpoint was set.");
|
|
if (!process.env.AZURE_OPENAI_KEY)
|
|
throw new Error("No Azure API key was set.");
|
|
|
|
this.openai = new OpenAIClient(
|
|
process.env.AZURE_OPENAI_ENDPOINT,
|
|
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
|
|
);
|
|
this.model = process.env.OPEN_MODEL_PREF;
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
|
this.defaultTemp = 0.7;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
// Sure the user selected a proper value for the token limit
|
|
// could be any of these https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-models
|
|
// and if undefined - assume it is the lowest end.
|
|
promptWindowLimit() {
|
|
return !!process.env.AZURE_OPENAI_TOKEN_LIMIT
|
|
? Number(process.env.AZURE_OPENAI_TOKEN_LIMIT)
|
|
: 4096;
|
|
}
|
|
|
|
isValidChatCompletionModel(_modelName = "") {
|
|
// The Azure user names their "models" as deployments and they can be any name
|
|
// so we rely on the user to put in the correct deployment as only they would
|
|
// know it.
|
|
return true;
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
}
|
|
|
|
async getChatCompletion(messages = [], { temperature = 0.7 }) {
|
|
if (!this.model)
|
|
throw new Error(
|
|
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
|
|
);
|
|
|
|
const data = await this.openai.getChatCompletions(this.model, messages, {
|
|
temperature,
|
|
});
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
return data.choices[0].message.content;
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = [], { temperature = 0.7 }) {
|
|
if (!this.model)
|
|
throw new Error(
|
|
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
|
|
);
|
|
|
|
const stream = await this.openai.streamChatCompletions(
|
|
this.model,
|
|
messages,
|
|
{
|
|
temperature,
|
|
n: 1,
|
|
}
|
|
);
|
|
return stream;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
|
|
|
return new Promise(async (resolve) => {
|
|
let fullText = "";
|
|
|
|
// Establish listener to early-abort a streaming response
|
|
// in case things go sideways or the user does not like the response.
|
|
// We preserve the generated text but continue as if chat was completed
|
|
// to preserve previously generated content.
|
|
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
|
response.on("close", handleAbort);
|
|
|
|
for await (const event of stream) {
|
|
for (const choice of event.choices) {
|
|
const delta = choice.delta?.content;
|
|
if (!delta) continue;
|
|
fullText += delta;
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: delta,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
}
|
|
}
|
|
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources,
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: false,
|
|
});
|
|
response.removeListener("close", handleAbort);
|
|
resolve(fullText);
|
|
});
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
AzureOpenAiLLM,
|
|
};
|