anything-llm/server/utils/vectorDbProviders/weaviate/index.js
Timothy Carambat 8cc1455b72
feat: add support for variable chunk length (#415)
fix: cleanup code for embedding length clarify
resolves #388
2023-12-07 16:27:36 -08:00

463 lines
15 KiB
JavaScript

const { default: weaviate } = require("weaviate-ts-client");
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
const { storeVectorResult, cachedVectorInformation } = require("../../files");
const { v4: uuidv4 } = require("uuid");
const {
toChunks,
getLLMProvider,
getEmbeddingEngineSelection,
} = require("../../helpers");
const { camelCase } = require("../../helpers/camelcase");
const Weaviate = {
name: "Weaviate",
connect: async function () {
if (process.env.VECTOR_DB !== "weaviate")
throw new Error("Weaviate::Invalid ENV settings");
const weaviateUrl = new URL(process.env.WEAVIATE_ENDPOINT);
const options = {
scheme: weaviateUrl.protocol?.replace(":", "") || "http",
host: weaviateUrl?.host,
...(process.env?.WEAVIATE_API_KEY?.length > 0
? { apiKey: new weaviate.ApiKey(process.env?.WEAVIATE_API_KEY) }
: {}),
};
const client = weaviate.client(options);
const isAlive = await await client.misc.liveChecker().do();
if (!isAlive)
throw new Error(
"Weaviate::Invalid Alive signal received - is the service online?"
);
return { client };
},
heartbeat: async function () {
await this.connect();
return { heartbeat: Number(new Date()) };
},
totalVectors: async function () {
const { client } = await this.connect();
const collectionNames = await this.allNamespaces(client);
var totalVectors = 0;
for (const name of collectionNames) {
totalVectors += await this.namespaceCountWithClient(client, name);
}
return totalVectors;
},
namespaceCountWithClient: async function (client, namespace) {
try {
const response = await client.graphql
.aggregate()
.withClassName(camelCase(namespace))
.withFields("meta { count }")
.do();
return (
response?.data?.Aggregate?.[camelCase(namespace)]?.[0]?.meta?.count || 0
);
} catch (e) {
console.error(`Weaviate:namespaceCountWithClient`, e.message);
return 0;
}
},
namespaceCount: async function (namespace = null) {
try {
const { client } = await this.connect();
const response = await client.graphql
.aggregate()
.withClassName(camelCase(namespace))
.withFields("meta { count }")
.do();
return (
response?.data?.Aggregate?.[camelCase(namespace)]?.[0]?.meta?.count || 0
);
} catch (e) {
console.error(`Weaviate:namespaceCountWithClient`, e.message);
return 0;
}
},
similarityResponse: async function (
client,
namespace,
queryVector,
similarityThreshold = 0.25
) {
const result = {
contextTexts: [],
sourceDocuments: [],
scores: [],
};
const weaviateClass = await this.namespace(client, namespace);
const fields = weaviateClass.properties.map((prop) => prop.name).join(" ");
const queryResponse = await client.graphql
.get()
.withClassName(camelCase(namespace))
.withFields(`${fields} _additional { id certainty }`)
.withNearVector({ vector: queryVector })
.withLimit(4)
.do();
const responses = queryResponse?.data?.Get?.[camelCase(namespace)];
responses.forEach((response) => {
// In Weaviate we have to pluck id from _additional and spread it into the rest
// of the properties.
const {
_additional: { id, certainty },
...rest
} = response;
if (certainty < similarityThreshold) return;
result.contextTexts.push(rest.text);
result.sourceDocuments.push({ ...rest, id });
result.scores.push(certainty);
});
return result;
},
allNamespaces: async function (client) {
try {
const { classes = [] } = await client.schema.getter().do();
return classes.map((classObj) => classObj.class);
} catch (e) {
console.error("Weaviate::AllNamespace", e);
return [];
}
},
namespace: async function (client, namespace = null) {
if (!namespace) throw new Error("No namespace value provided.");
if (!(await this.namespaceExists(client, namespace))) return null;
const weaviateClass = await client.schema
.classGetter()
.withClassName(camelCase(namespace))
.do();
return {
...weaviateClass,
vectorCount: await this.namespaceCount(namespace),
};
},
addVectors: async function (client, vectors = []) {
const response = { success: true, errors: new Set([]) };
const results = await client.batch
.objectsBatcher()
.withObjects(...vectors)
.do();
results.forEach((res) => {
const { status, errors = [] } = res.result;
if (status === "SUCCESS" || errors.length === 0) return;
response.success = false;
response.errors.add(errors.error?.[0]?.message || null);
});
response.errors = [...response.errors];
return response;
},
hasNamespace: async function (namespace = null) {
if (!namespace) return false;
const { client } = await this.connect();
const weaviateClasses = await this.allNamespaces(client);
return weaviateClasses.includes(camelCase(namespace));
},
namespaceExists: async function (client, namespace = null) {
if (!namespace) throw new Error("No namespace value provided.");
const weaviateClasses = await this.allNamespaces(client);
return weaviateClasses.includes(camelCase(namespace));
},
deleteVectorsInNamespace: async function (client, namespace = null) {
await client.schema.classDeleter().withClassName(camelCase(namespace)).do();
return true;
},
addDocumentToNamespace: async function (
namespace,
documentData = {},
fullFilePath = null
) {
const { DocumentVectors } = require("../../../models/vectors");
try {
const {
pageContent,
docId,
id: _id, // Weaviate will abort if `id` is present in properties
...metadata
} = documentData;
if (!pageContent || pageContent.length == 0) return false;
console.log("Adding new vectorized document into namespace", namespace);
const cacheResult = await cachedVectorInformation(fullFilePath);
if (cacheResult.exists) {
const { client } = await this.connect();
const weaviateClassExits = await this.hasNamespace(namespace);
if (!weaviateClassExits) {
await client.schema
.classCreator()
.withClass({
class: camelCase(namespace),
description: `Class created by AnythingLLM named ${camelCase(
namespace
)}`,
vectorizer: "none",
})
.do();
}
const { chunks } = cacheResult;
const documentVectors = [];
const vectors = [];
for (const chunk of chunks) {
// Before sending to Weaviate and saving the records to our db
// we need to assign the id of each chunk that is stored in the cached file.
chunk.forEach((chunk) => {
const id = uuidv4();
const flattenedMetadata = this.flattenObjectForWeaviate(
chunk.properties
);
documentVectors.push({ docId, vectorId: id });
const vectorRecord = {
id,
class: camelCase(namespace),
vector: chunk.vector || chunk.values || [],
properties: { ...flattenedMetadata },
};
vectors.push(vectorRecord);
});
const { success: additionResult, errors = [] } =
await this.addVectors(client, vectors);
if (!additionResult) {
console.error("Weaviate::addVectors failed to insert", errors);
throw new Error("Error embedding into Weaviate");
}
}
await DocumentVectors.bulkInsert(documentVectors);
return true;
}
// If we are here then we are going to embed and store a novel document.
// We have to do this manually as opposed to using LangChains `Chroma.fromDocuments`
// because we then cannot atomically control our namespace to granularly find/remove documents
// from vectordb.
const textSplitter = new RecursiveCharacterTextSplitter({
chunkSize:
getEmbeddingEngineSelection()?.embeddingMaxChunkLength || 1_000,
chunkOverlap: 20,
});
const textChunks = await textSplitter.splitText(pageContent);
console.log("Chunks created from document:", textChunks.length);
const LLMConnector = getLLMProvider();
const documentVectors = [];
const vectors = [];
const vectorValues = await LLMConnector.embedChunks(textChunks);
const submission = {
ids: [],
vectors: [],
properties: [],
};
if (!!vectorValues && vectorValues.length > 0) {
for (const [i, vector] of vectorValues.entries()) {
const flattenedMetadata = this.flattenObjectForWeaviate(metadata);
const vectorRecord = {
class: camelCase(namespace),
id: uuidv4(),
vector: vector,
// [DO NOT REMOVE]
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
// https://github.com/hwchase17/langchainjs/blob/5485c4af50c063e257ad54f4393fa79e0aff6462/langchain/src/vectorstores/weaviate.ts#L133
properties: { ...flattenedMetadata, text: textChunks[i] },
};
submission.ids.push(vectorRecord.id);
submission.vectors.push(vectorRecord.values);
submission.properties.push(metadata);
vectors.push(vectorRecord);
documentVectors.push({ docId, vectorId: vectorRecord.id });
}
} else {
throw new Error(
"Could not embed document chunks! This document will not be recorded."
);
}
const { client } = await this.connect();
const weaviateClassExits = await this.hasNamespace(namespace);
if (!weaviateClassExits) {
await client.schema
.classCreator()
.withClass({
class: camelCase(namespace),
description: `Class created by AnythingLLM named ${camelCase(
namespace
)}`,
vectorizer: "none",
})
.do();
}
if (vectors.length > 0) {
const chunks = [];
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
console.log("Inserting vectorized chunks into Weaviate collection.");
const { success: additionResult, errors = [] } = await this.addVectors(
client,
vectors
);
if (!additionResult) {
console.error("Weaviate::addVectors failed to insert", errors);
throw new Error("Error embedding into Weaviate");
}
await storeVectorResult(chunks, fullFilePath);
}
await DocumentVectors.bulkInsert(documentVectors);
return true;
} catch (e) {
console.error(e);
console.error("addDocumentToNamespace", e.message);
return false;
}
},
deleteDocumentFromNamespace: async function (namespace, docId) {
const { DocumentVectors } = require("../../../models/vectors");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace))) return;
const knownDocuments = await DocumentVectors.where({ docId });
if (knownDocuments.length === 0) return;
for (const doc of knownDocuments) {
await client.data
.deleter()
.withClassName(camelCase(namespace))
.withId(doc.vectorId)
.do();
}
const indexes = knownDocuments.map((doc) => doc.id);
await DocumentVectors.deleteIds(indexes);
return true;
},
performSimilaritySearch: async function ({
namespace = null,
input = "",
LLMConnector = null,
similarityThreshold = 0.25,
}) {
if (!namespace || !input || !LLMConnector)
throw new Error("Invalid request to performSimilaritySearch.");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace))) {
return {
contextTexts: [],
sources: [],
message: "Invalid query - no documents found for workspace!",
};
}
const queryVector = await LLMConnector.embedTextInput(input);
const { contextTexts, sourceDocuments } = await this.similarityResponse(
client,
namespace,
queryVector,
similarityThreshold
);
const sources = sourceDocuments.map((metadata, i) => {
return { ...metadata, text: contextTexts[i] };
});
return {
contextTexts,
sources: this.curateSources(sources),
message: false,
};
},
"namespace-stats": async function (reqBody = {}) {
const { namespace = null } = reqBody;
if (!namespace) throw new Error("namespace required");
const { client } = await this.connect();
const stats = await this.namespace(client, namespace);
return stats
? stats
: { message: "No stats were able to be fetched from DB for namespace" };
},
"delete-namespace": async function (reqBody = {}) {
const { namespace = null } = reqBody;
const { client } = await this.connect();
const details = await this.namespace(client, namespace);
await this.deleteVectorsInNamespace(client, namespace);
return {
message: `Namespace ${camelCase(namespace)} was deleted along with ${
details?.vectorCount
} vectors.`,
};
},
reset: async function () {
const { client } = await this.connect();
const weaviateClasses = await this.allNamespaces(client);
for (const weaviateClass of weaviateClasses) {
await client.schema.classDeleter().withClassName(weaviateClass).do();
}
return { reset: true };
},
curateSources: function (sources = []) {
const documents = [];
for (const source of sources) {
if (Object.keys(source).length > 0) {
const metadata = source.hasOwnProperty("metadata")
? source.metadata
: source;
documents.push({ ...metadata });
}
}
return documents;
},
flattenObjectForWeaviate: function (obj = {}) {
// Note this function is not generic, it is designed specifically for Weaviate
// https://weaviate.io/developers/weaviate/config-refs/datatypes#introduction
// Credit to LangchainJS
// https://github.com/hwchase17/langchainjs/blob/5485c4af50c063e257ad54f4393fa79e0aff6462/langchain/src/vectorstores/weaviate.ts#L11C1-L50C3
const flattenedObject = {};
for (const key in obj) {
if (!Object.hasOwn(obj, key)) {
continue;
}
const value = obj[key];
if (typeof obj[key] === "object" && !Array.isArray(value)) {
const recursiveResult = this.flattenObjectForWeaviate(value);
for (const deepKey in recursiveResult) {
if (Object.hasOwn(obj, key)) {
flattenedObject[`${key}_${deepKey}`] = recursiveResult[deepKey];
}
}
} else if (Array.isArray(value)) {
if (
value.length > 0 &&
typeof value[0] !== "object" &&
// eslint-disable-next-line @typescript-eslint/no-explicit-any
value.every((el) => typeof el === typeof value[0])
) {
// Weaviate only supports arrays of primitive types,
// where all elements are of the same type
flattenedObject[key] = value;
}
} else {
flattenedObject[key] = value;
}
}
return flattenedObject;
},
};
module.exports.Weaviate = Weaviate;