mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-14 18:40:11 +01:00
4118c9dcf3
* Adds ability to import sitemaps to include a website * adds example sitemap url * adds filter to bypass common image formats * moves filetype ignoring to sitemap script
149 lines
5.3 KiB
Python
149 lines
5.3 KiB
Python
import os, json, tempfile
|
|
from urllib.parse import urlparse
|
|
from requests_html import HTMLSession
|
|
from langchain.document_loaders import UnstructuredHTMLLoader
|
|
from .link_utils import append_meta
|
|
from .utils import tokenize, ada_v2_cost
|
|
|
|
# Example Channel URL https://tim.blog/2022/08/09/nft-insider-trading-policy/
|
|
def link():
|
|
print("[NOTICE]: The first time running this process it will download supporting libraries.\n\n")
|
|
fqdn_link = input("Paste in the URL of an online article or blog: ")
|
|
if(len(fqdn_link) == 0):
|
|
print("Invalid URL!")
|
|
exit(1)
|
|
|
|
session = HTMLSession()
|
|
req = session.get(fqdn_link)
|
|
if(req.ok == False):
|
|
print("Could not reach this url!")
|
|
exit(1)
|
|
|
|
req.html.render()
|
|
full_text = None
|
|
with tempfile.NamedTemporaryFile(mode = "w") as tmp:
|
|
tmp.write(req.html.html)
|
|
tmp.seek(0)
|
|
loader = UnstructuredHTMLLoader(tmp.name)
|
|
data = loader.load()[0]
|
|
full_text = data.page_content
|
|
tmp.close()
|
|
|
|
link = append_meta(req, full_text, True)
|
|
if(len(full_text) > 0):
|
|
source = urlparse(req.url)
|
|
output_filename = f"website-{source.netloc}-{source.path.replace('/','_')}.json"
|
|
output_path = f"./outputs/website-logs"
|
|
|
|
transaction_output_filename = f"article-{source.path.replace('/','_')}.json"
|
|
transaction_output_dir = f"../server/storage/documents/website-{source.netloc}"
|
|
|
|
if os.path.isdir(output_path) == False:
|
|
os.makedirs(output_path)
|
|
|
|
if os.path.isdir(transaction_output_dir) == False:
|
|
os.makedirs(transaction_output_dir)
|
|
|
|
full_text = append_meta(req, full_text)
|
|
tokenCount = len(tokenize(full_text))
|
|
link['pageContent'] = full_text
|
|
link['token_count_estimate'] = tokenCount
|
|
|
|
with open(f"{output_path}/{output_filename}", 'w', encoding='utf-8') as file:
|
|
json.dump(link, file, ensure_ascii=True, indent=4)
|
|
|
|
with open(f"{transaction_output_dir}/{transaction_output_filename}", 'w', encoding='utf-8') as file:
|
|
json.dump(link, file, ensure_ascii=True, indent=4)
|
|
else:
|
|
print("Could not parse any meaningful data from this link or url.")
|
|
exit(1)
|
|
|
|
print(f"\n\n[Success]: article or link content fetched!")
|
|
print(f"////////////////////////////")
|
|
print(f"Your estimated cost to embed this data using OpenAI's text-embedding-ada-002 model at $0.0004 / 1K tokens will cost {ada_v2_cost(tokenCount)} using {tokenCount} tokens.")
|
|
print(f"////////////////////////////")
|
|
exit(0)
|
|
|
|
def links():
|
|
links = []
|
|
prompt = "Paste in the URL of an online article or blog: "
|
|
done = False
|
|
|
|
while(done == False):
|
|
new_link = input(prompt)
|
|
if(len(new_link) == 0):
|
|
done = True
|
|
links = [*set(links)]
|
|
continue
|
|
|
|
links.append(new_link)
|
|
prompt = f"\n{len(links)} links in queue. Submit an empty value when done pasting in links to execute collection.\nPaste in the next URL of an online article or blog: "
|
|
|
|
if(len(links) == 0):
|
|
print("No valid links provided!")
|
|
exit(1)
|
|
|
|
parse_links(links)
|
|
|
|
|
|
|
|
# parse links from array
|
|
def parse_links(links):
|
|
totalTokens = 0
|
|
for link in links:
|
|
print(f"Working on {link}...")
|
|
session = HTMLSession()
|
|
|
|
req = session.get(link, timeout=20)
|
|
|
|
if not req.ok:
|
|
print(f"Could not reach {link} - skipping!")
|
|
continue
|
|
|
|
req.html.render(timeout=10)
|
|
|
|
full_text = None
|
|
with tempfile.NamedTemporaryFile(mode="w") as tmp:
|
|
tmp.write(req.html.html)
|
|
tmp.seek(0)
|
|
loader = UnstructuredHTMLLoader(tmp.name)
|
|
data = loader.load()[0]
|
|
full_text = data.page_content
|
|
tmp.close()
|
|
|
|
link = append_meta(req, full_text, True)
|
|
if len(full_text) > 0:
|
|
source = urlparse(req.url)
|
|
output_filename = f"website-{source.netloc}-{source.path.replace('/','_')}.json"
|
|
output_path = f"./outputs/website-logs"
|
|
|
|
transaction_output_filename = f"article-{source.path.replace('/','_')}.json"
|
|
transaction_output_dir = f"../server/storage/documents/website-{source.netloc}"
|
|
|
|
if not os.path.isdir(output_path):
|
|
os.makedirs(output_path)
|
|
|
|
if not os.path.isdir(transaction_output_dir):
|
|
os.makedirs(transaction_output_dir)
|
|
|
|
full_text = append_meta(req, full_text)
|
|
tokenCount = len(tokenize(full_text))
|
|
link['pageContent'] = full_text
|
|
link['token_count_estimate'] = tokenCount
|
|
totalTokens += tokenCount
|
|
|
|
with open(f"{output_path}/{output_filename}", 'w', encoding='utf-8') as file:
|
|
json.dump(link, file, ensure_ascii=True, indent=4)
|
|
|
|
with open(f"{transaction_output_dir}/{transaction_output_filename}", 'w', encoding='utf-8') as file:
|
|
json.dump(link, file, ensure_ascii=True, indent=4)
|
|
|
|
req.session.close()
|
|
else:
|
|
print(f"Could not parse any meaningful data from {link}.")
|
|
continue
|
|
|
|
print(f"\n\n[Success]: {len(links)} article or link contents fetched!")
|
|
print(f"////////////////////////////")
|
|
print(f"Your estimated cost to embed this data using OpenAI's text-embedding-ada-002 model at $0.0004 / 1K tokens will cost {ada_v2_cost(totalTokens)} using {totalTokens} tokens.")
|
|
print(f"////////////////////////////") |