mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-09 00:10:10 +01:00
1f29cec918
* Remove LangchainJS for chat support chaining Implement runtime LLM selection Implement AzureOpenAI Support for LLM + Emebedding WIP on frontend Update env to reflect the new fields * Remove LangchainJS for chat support chaining Implement runtime LLM selection Implement AzureOpenAI Support for LLM + Emebedding WIP on frontend Update env to reflect the new fields * Replace keys with LLM Selection in settings modal Enforce checks for new ENVs depending on LLM selection
163 lines
3.9 KiB
JavaScript
163 lines
3.9 KiB
JavaScript
const KEY_MAPPING = {
|
|
LLMProvider: {
|
|
envKey: "LLM_PROVIDER",
|
|
checks: [isNotEmpty, supportedLLM],
|
|
},
|
|
// OpenAI Settings
|
|
OpenAiKey: {
|
|
envKey: "OPEN_AI_KEY",
|
|
checks: [isNotEmpty, validOpenAIKey],
|
|
},
|
|
OpenAiModelPref: {
|
|
envKey: "OPEN_MODEL_PREF",
|
|
checks: [isNotEmpty, validOpenAIModel],
|
|
},
|
|
// Azure OpenAI Settings
|
|
AzureOpenAiEndpoint: {
|
|
envKey: "AZURE_OPENAI_ENDPOINT",
|
|
checks: [isNotEmpty, validAzureURL],
|
|
},
|
|
AzureOpenAiKey: {
|
|
envKey: "AZURE_OPENAI_KEY",
|
|
checks: [isNotEmpty],
|
|
},
|
|
AzureOpenAiModelPref: {
|
|
envKey: "OPEN_MODEL_PREF",
|
|
checks: [isNotEmpty],
|
|
},
|
|
AzureOpenAiEmbeddingModelPref: {
|
|
envKey: "EMBEDDING_MODEL_PREF",
|
|
checks: [isNotEmpty],
|
|
},
|
|
|
|
// Vector Database Selection Settings
|
|
VectorDB: {
|
|
envKey: "VECTOR_DB",
|
|
checks: [isNotEmpty, supportedVectorDB],
|
|
},
|
|
ChromaEndpoint: {
|
|
envKey: "CHROMA_ENDPOINT",
|
|
checks: [isValidURL, validChromaURL],
|
|
},
|
|
PineConeEnvironment: {
|
|
envKey: "PINECONE_ENVIRONMENT",
|
|
checks: [],
|
|
},
|
|
PineConeKey: {
|
|
envKey: "PINECONE_API_KEY",
|
|
checks: [],
|
|
},
|
|
PineConeIndex: {
|
|
envKey: "PINECONE_INDEX",
|
|
checks: [],
|
|
},
|
|
|
|
// System Settings
|
|
AuthToken: {
|
|
envKey: "AUTH_TOKEN",
|
|
checks: [],
|
|
},
|
|
JWTSecret: {
|
|
envKey: "JWT_SECRET",
|
|
checks: [],
|
|
},
|
|
// Not supported yet.
|
|
// 'StorageDir': 'STORAGE_DIR',
|
|
};
|
|
|
|
function isNotEmpty(input = "") {
|
|
return !input || input.length === 0 ? "Value cannot be empty" : null;
|
|
}
|
|
|
|
function isValidURL(input = "") {
|
|
try {
|
|
new URL(input);
|
|
return null;
|
|
} catch (e) {
|
|
return "URL is not a valid URL.";
|
|
}
|
|
}
|
|
|
|
function validOpenAIKey(input = "") {
|
|
return input.startsWith("sk-") ? null : "OpenAI Key must start with sk-";
|
|
}
|
|
|
|
function supportedLLM(input = "") {
|
|
return ["openai", "azure"].includes(input);
|
|
}
|
|
|
|
function validOpenAIModel(input = "") {
|
|
const validModels = [
|
|
"gpt-4",
|
|
"gpt-4-0613",
|
|
"gpt-4-32k",
|
|
"gpt-4-32k-0613",
|
|
"gpt-3.5-turbo",
|
|
"gpt-3.5-turbo-0613",
|
|
"gpt-3.5-turbo-16k",
|
|
"gpt-3.5-turbo-16k-0613",
|
|
];
|
|
return validModels.includes(input)
|
|
? null
|
|
: `Invalid Model type. Must be one of ${validModels.join(", ")}.`;
|
|
}
|
|
|
|
function supportedVectorDB(input = "") {
|
|
const supported = ["chroma", "pinecone", "lancedb"];
|
|
return supported.includes(input)
|
|
? null
|
|
: `Invalid VectorDB type. Must be one of ${supported.join(", ")}.`;
|
|
}
|
|
|
|
function validChromaURL(input = "") {
|
|
return input.slice(-1) === "/"
|
|
? `Chroma Instance URL should not end in a trailing slash.`
|
|
: null;
|
|
}
|
|
|
|
function validAzureURL(input = "") {
|
|
try {
|
|
new URL(input);
|
|
if (!input.includes("openai.azure.com"))
|
|
return "URL must include openai.azure.com";
|
|
return null;
|
|
} catch {
|
|
return "Not a valid URL";
|
|
}
|
|
}
|
|
|
|
// This will force update .env variables which for any which reason were not able to be parsed or
|
|
// read from an ENV file as this seems to be a complicating step for many so allowing people to write
|
|
// to the process will at least alleviate that issue. It does not perform comprehensive validity checks or sanity checks
|
|
// and is simply for debugging when the .env not found issue many come across.
|
|
function updateENV(newENVs = {}) {
|
|
let error = "";
|
|
const validKeys = Object.keys(KEY_MAPPING);
|
|
const ENV_KEYS = Object.keys(newENVs).filter(
|
|
(key) => validKeys.includes(key) && !newENVs[key].includes("******") // strip out answers where the value is all asterisks
|
|
);
|
|
const newValues = {};
|
|
|
|
ENV_KEYS.forEach((key) => {
|
|
const { envKey, checks } = KEY_MAPPING[key];
|
|
const value = newENVs[key];
|
|
const errors = checks
|
|
.map((validityCheck) => validityCheck(value))
|
|
.filter((err) => typeof err === "string");
|
|
|
|
if (errors.length > 0) {
|
|
error += errors.join("\n");
|
|
return;
|
|
}
|
|
|
|
newValues[key] = value;
|
|
process.env[envKey] = value;
|
|
});
|
|
|
|
return { newValues, error: error?.length > 0 ? error : false };
|
|
}
|
|
|
|
module.exports = {
|
|
updateENV,
|
|
};
|