mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 12:40:09 +01:00
323 lines
10 KiB
JavaScript
323 lines
10 KiB
JavaScript
const { StringOutputParser } = require("@langchain/core/output_parsers");
|
|
const {
|
|
writeResponseChunk,
|
|
clientAbortedHandler,
|
|
} = require("../../helpers/chat/responses");
|
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
|
|
// Docs: https://js.langchain.com/v0.2/docs/integrations/chat/bedrock_converse
|
|
class AWSBedrockLLM {
|
|
/**
|
|
* These models do not support system prompts
|
|
* It is not explicitly stated but it is observed that they do not use the system prompt
|
|
* in their responses and will crash when a system prompt is provided.
|
|
* We can add more models to this list as we discover them or new models are added.
|
|
* We may want to extend this list or make a user-config if using custom bedrock models.
|
|
*/
|
|
noSystemPromptModels = [
|
|
"amazon.titan-text-express-v1",
|
|
"amazon.titan-text-lite-v1",
|
|
"cohere.command-text-v14",
|
|
"cohere.command-light-text-v14",
|
|
];
|
|
|
|
constructor(embedder = null, modelPreference = null) {
|
|
if (!process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID)
|
|
throw new Error("No AWS Bedrock LLM profile id was set.");
|
|
|
|
if (!process.env.AWS_BEDROCK_LLM_ACCESS_KEY)
|
|
throw new Error("No AWS Bedrock LLM access key was set.");
|
|
|
|
if (!process.env.AWS_BEDROCK_LLM_REGION)
|
|
throw new Error("No AWS Bedrock LLM region was set.");
|
|
|
|
if (
|
|
process.env.AWS_BEDROCK_LLM_CONNECTION_METHOD === "sessionToken" &&
|
|
!process.env.AWS_BEDROCK_LLM_SESSION_TOKEN
|
|
)
|
|
throw new Error(
|
|
"No AWS Bedrock LLM session token was set while using session token as the authentication method."
|
|
);
|
|
|
|
this.model =
|
|
modelPreference || process.env.AWS_BEDROCK_LLM_MODEL_PREFERENCE;
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
|
this.defaultTemp = 0.7;
|
|
this.#log(
|
|
`Loaded with model: ${this.model}. Will communicate with AWS Bedrock using ${this.authMethod} authentication.`
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Get the authentication method for the AWS Bedrock LLM.
|
|
* There are only two valid values for this setting - anything else will default to "iam".
|
|
* @returns {"iam"|"sessionToken"}
|
|
*/
|
|
get authMethod() {
|
|
const method = process.env.AWS_BEDROCK_LLM_CONNECTION_METHOD || "iam";
|
|
if (!["iam", "sessionToken"].includes(method)) return "iam";
|
|
return method;
|
|
}
|
|
|
|
#bedrockClient({ temperature = 0.7 }) {
|
|
const { ChatBedrockConverse } = require("@langchain/aws");
|
|
return new ChatBedrockConverse({
|
|
model: this.model,
|
|
region: process.env.AWS_BEDROCK_LLM_REGION,
|
|
credentials: {
|
|
accessKeyId: process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID,
|
|
secretAccessKey: process.env.AWS_BEDROCK_LLM_ACCESS_KEY,
|
|
...(this.authMethod === "sessionToken"
|
|
? { sessionToken: process.env.AWS_BEDROCK_LLM_SESSION_TOKEN }
|
|
: {}),
|
|
},
|
|
temperature,
|
|
});
|
|
}
|
|
|
|
// For streaming we use Langchain's wrapper to handle weird chunks
|
|
// or otherwise absorb headaches that can arise from Ollama models
|
|
#convertToLangchainPrototypes(chats = []) {
|
|
const {
|
|
HumanMessage,
|
|
SystemMessage,
|
|
AIMessage,
|
|
} = require("@langchain/core/messages");
|
|
const langchainChats = [];
|
|
const roleToMessageMap = {
|
|
system: SystemMessage,
|
|
user: HumanMessage,
|
|
assistant: AIMessage,
|
|
};
|
|
|
|
for (const chat of chats) {
|
|
if (!roleToMessageMap.hasOwnProperty(chat.role)) continue;
|
|
|
|
// When a model does not support system prompts, we need to handle it.
|
|
// We will add a new message that simulates the system prompt via a user message and AI response.
|
|
// This will allow the model to respond without crashing but we can still inject context.
|
|
if (
|
|
this.noSystemPromptModels.includes(this.model) &&
|
|
chat.role === "system"
|
|
) {
|
|
this.#log(
|
|
`Model does not support system prompts! Simulating system prompt via Human/AI message pairs.`
|
|
);
|
|
langchainChats.push(new HumanMessage({ content: chat.content }));
|
|
langchainChats.push(new AIMessage({ content: "Okay." }));
|
|
continue;
|
|
}
|
|
|
|
const MessageClass = roleToMessageMap[chat.role];
|
|
langchainChats.push(new MessageClass({ content: chat.content }));
|
|
}
|
|
|
|
return langchainChats;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
#log(text, ...args) {
|
|
console.log(`\x1b[32m[AWSBedrock]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
static promptWindowLimit(_modelName) {
|
|
const limit = process.env.AWS_BEDROCK_LLM_MODEL_TOKEN_LIMIT || 8191;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No valid token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
// Ensure the user set a value for the token limit
|
|
// and if undefined - assume 4096 window.
|
|
promptWindowLimit() {
|
|
const limit = process.env.AWS_BEDROCK_LLM_MODEL_TOKEN_LIMIT || 8191;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No valid token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
async isValidChatCompletionModel(_ = "") {
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Generates appropriate content array for a message + attachments.
|
|
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
|
* @returns {string|object[]}
|
|
*/
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
if (!attachments.length) {
|
|
return { content: userPrompt };
|
|
}
|
|
|
|
const content = [{ type: "text", text: userPrompt }];
|
|
for (let attachment of attachments) {
|
|
content.push({
|
|
type: "image_url",
|
|
image_url: attachment.contentString,
|
|
});
|
|
}
|
|
return { content: content.flat() };
|
|
}
|
|
|
|
/**
|
|
* Construct the user prompt for this model.
|
|
* @param {{attachments: import("../../helpers").Attachment[]}} param0
|
|
* @returns
|
|
*/
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
attachments = [],
|
|
}) {
|
|
// AWS Mistral models do not support system prompts
|
|
if (this.model.startsWith("mistral"))
|
|
return [
|
|
...chatHistory,
|
|
{
|
|
role: "user",
|
|
...this.#generateContent({ userPrompt, attachments }),
|
|
},
|
|
];
|
|
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [
|
|
prompt,
|
|
...chatHistory,
|
|
{
|
|
role: "user",
|
|
...this.#generateContent({ userPrompt, attachments }),
|
|
},
|
|
];
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
const model = this.#bedrockClient({ temperature });
|
|
const textResponse = await model
|
|
.pipe(new StringOutputParser())
|
|
.invoke(this.#convertToLangchainPrototypes(messages))
|
|
.catch((e) => {
|
|
throw new Error(
|
|
`AWSBedrock::getChatCompletion failed to communicate with Ollama. ${e.message}`
|
|
);
|
|
});
|
|
|
|
if (!textResponse || !textResponse.length)
|
|
throw new Error(`AWSBedrock::getChatCompletion text response was empty.`);
|
|
|
|
return textResponse;
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
const model = this.#bedrockClient({ temperature });
|
|
const stream = await model
|
|
.pipe(new StringOutputParser())
|
|
.stream(this.#convertToLangchainPrototypes(messages));
|
|
return stream;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
|
|
|
return new Promise(async (resolve) => {
|
|
let fullText = "";
|
|
|
|
// Establish listener to early-abort a streaming response
|
|
// in case things go sideways or the user does not like the response.
|
|
// We preserve the generated text but continue as if chat was completed
|
|
// to preserve previously generated content.
|
|
const handleAbort = () => clientAbortedHandler(resolve, fullText);
|
|
response.on("close", handleAbort);
|
|
|
|
try {
|
|
for await (const chunk of stream) {
|
|
if (chunk === undefined)
|
|
throw new Error(
|
|
"Stream returned undefined chunk. Aborting reply - check model provider logs."
|
|
);
|
|
|
|
const content = chunk.hasOwnProperty("content")
|
|
? chunk.content
|
|
: chunk;
|
|
fullText += content;
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: content,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
}
|
|
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources,
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: false,
|
|
});
|
|
response.removeListener("close", handleAbort);
|
|
resolve(fullText);
|
|
} catch (error) {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: `AWSBedrock:streaming - could not stream chat. ${
|
|
error?.cause ?? error.message
|
|
}`,
|
|
});
|
|
response.removeListener("close", handleAbort);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
AWSBedrockLLM,
|
|
};
|