mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-14 18:40:11 +01:00
b35feede87
* Add support for fetching single document in documents folder * Add document object to upload + support link scraping via API * hotfixes for documentation * update api docs
155 lines
4.6 KiB
JavaScript
155 lines
4.6 KiB
JavaScript
const fs = require("fs");
|
|
const path = require("path");
|
|
const { v4 } = require("uuid");
|
|
const {
|
|
createdDate,
|
|
trashFile,
|
|
writeToServerDocuments,
|
|
} = require("../../utils/files");
|
|
const { tokenizeString } = require("../../utils/tokenizer");
|
|
const { default: slugify } = require("slugify");
|
|
const { LocalWhisper } = require("../../utils/WhisperProviders/localWhisper");
|
|
|
|
async function asAudio({ fullFilePath = "", filename = "" }) {
|
|
const whisper = new LocalWhisper();
|
|
|
|
console.log(`-- Working ${filename} --`);
|
|
const transcriberPromise = new Promise((resolve) =>
|
|
whisper.client().then((client) => resolve(client))
|
|
);
|
|
const audioDataPromise = new Promise((resolve) =>
|
|
convertToWavAudioData(fullFilePath).then((audioData) => resolve(audioData))
|
|
);
|
|
const [audioData, transcriber] = await Promise.all([
|
|
audioDataPromise,
|
|
transcriberPromise,
|
|
]);
|
|
|
|
if (!audioData) {
|
|
console.error(`Failed to parse content from ${filename}.`);
|
|
trashFile(fullFilePath);
|
|
return {
|
|
success: false,
|
|
reason: `Failed to parse content from ${filename}.`,
|
|
documents: [],
|
|
};
|
|
}
|
|
|
|
console.log(`[Model Working]: Transcribing audio data to text`);
|
|
const { text: content } = await transcriber(audioData, {
|
|
chunk_length_s: 30,
|
|
stride_length_s: 5,
|
|
});
|
|
|
|
if (!content.length) {
|
|
console.error(`Resulting text content was empty for ${filename}.`);
|
|
trashFile(fullFilePath);
|
|
return {
|
|
success: false,
|
|
reason: `No text content found in ${filename}.`,
|
|
documents: [],
|
|
};
|
|
}
|
|
|
|
const data = {
|
|
id: v4(),
|
|
url: "file://" + fullFilePath,
|
|
title: filename,
|
|
docAuthor: "no author found",
|
|
description: "No description found.",
|
|
docSource: "pdf file uploaded by the user.",
|
|
chunkSource: filename,
|
|
published: createdDate(fullFilePath),
|
|
wordCount: content.split(" ").length,
|
|
pageContent: content,
|
|
token_count_estimate: tokenizeString(content).length,
|
|
};
|
|
|
|
const document = writeToServerDocuments(
|
|
data,
|
|
`${slugify(filename)}-${data.id}`
|
|
);
|
|
trashFile(fullFilePath);
|
|
console.log(
|
|
`[SUCCESS]: ${filename} transcribed, converted & ready for embedding.\n`
|
|
);
|
|
return { success: true, reason: null, documents: [document] };
|
|
}
|
|
|
|
async function convertToWavAudioData(sourcePath) {
|
|
try {
|
|
let buffer;
|
|
const wavefile = require("wavefile");
|
|
const ffmpeg = require("fluent-ffmpeg");
|
|
const outFolder = path.resolve(__dirname, `../../storage/tmp`);
|
|
if (!fs.existsSync(outFolder)) fs.mkdirSync(outFolder, { recursive: true });
|
|
|
|
const fileExtension = path.extname(sourcePath).toLowerCase();
|
|
if (fileExtension !== ".wav") {
|
|
console.log(
|
|
`[Conversion Required] ${fileExtension} file detected - converting to .wav`
|
|
);
|
|
const outputFile = path.resolve(outFolder, `${v4()}.wav`);
|
|
const convert = new Promise((resolve) => {
|
|
ffmpeg(sourcePath)
|
|
.toFormat("wav")
|
|
.on("error", (error) => {
|
|
console.error(`[Conversion Error] ${error.message}`);
|
|
resolve(false);
|
|
})
|
|
.on("progress", (progress) =>
|
|
console.log(
|
|
`[Conversion Processing]: ${progress.targetSize}KB converted`
|
|
)
|
|
)
|
|
.on("end", () => {
|
|
console.log("[Conversion Complete]: File converted to .wav!");
|
|
resolve(true);
|
|
})
|
|
.save(outputFile);
|
|
});
|
|
const success = await convert;
|
|
if (!success)
|
|
throw new Error(
|
|
"[Conversion Failed]: Could not convert file to .wav format!"
|
|
);
|
|
|
|
const chunks = [];
|
|
const stream = fs.createReadStream(outputFile);
|
|
for await (let chunk of stream) chunks.push(chunk);
|
|
buffer = Buffer.concat(chunks);
|
|
fs.rmSync(outputFile);
|
|
} else {
|
|
const chunks = [];
|
|
const stream = fs.createReadStream(sourcePath);
|
|
for await (let chunk of stream) chunks.push(chunk);
|
|
buffer = Buffer.concat(chunks);
|
|
}
|
|
|
|
const wavFile = new wavefile.WaveFile(buffer);
|
|
wavFile.toBitDepth("32f");
|
|
wavFile.toSampleRate(16000);
|
|
|
|
let audioData = wavFile.getSamples();
|
|
if (Array.isArray(audioData)) {
|
|
if (audioData.length > 1) {
|
|
const SCALING_FACTOR = Math.sqrt(2);
|
|
|
|
// Merge channels into first channel to save memory
|
|
for (let i = 0; i < audioData[0].length; ++i) {
|
|
audioData[0][i] =
|
|
(SCALING_FACTOR * (audioData[0][i] + audioData[1][i])) / 2;
|
|
}
|
|
}
|
|
audioData = audioData[0];
|
|
}
|
|
|
|
return audioData;
|
|
} catch (error) {
|
|
console.error(`convertToWavAudioData`, error);
|
|
return null;
|
|
}
|
|
}
|
|
|
|
module.exports = asAudio;
|