anything-llm/server/utils/AiProviders/azureOpenAi/index.js
Sean Hatfield 6674e5aab8
Support free-form input for workspace model for providers with no /models endpoint (#2397)
* support generic openai workspace model

* Update UI for free form input for some providers

---------

Co-authored-by: Timothy Carambat <rambat1010@gmail.com>
2024-10-15 15:24:44 -07:00

201 lines
5.8 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
class AzureOpenAiLLM {
constructor(embedder = null, modelPreference = null) {
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
if (!process.env.AZURE_OPENAI_ENDPOINT)
throw new Error("No Azure API endpoint was set.");
if (!process.env.AZURE_OPENAI_KEY)
throw new Error("No Azure API key was set.");
this.openai = new OpenAIClient(
process.env.AZURE_OPENAI_ENDPOINT,
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
);
this.model = modelPreference ?? process.env.OPEN_MODEL_PREF;
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(_modelName) {
return !!process.env.AZURE_OPENAI_TOKEN_LIMIT
? Number(process.env.AZURE_OPENAI_TOKEN_LIMIT)
: 4096;
}
// Sure the user selected a proper value for the token limit
// could be any of these https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-models
// and if undefined - assume it is the lowest end.
promptWindowLimit() {
return !!process.env.AZURE_OPENAI_TOKEN_LIMIT
? Number(process.env.AZURE_OPENAI_TOKEN_LIMIT)
: 4096;
}
isValidChatCompletionModel(_modelName = "") {
// The Azure user names their "models" as deployments and they can be any name
// so we rely on the user to put in the correct deployment as only they would
// know it.
return true;
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
imageUrl: {
url: attachment.contentString,
},
});
}
return content.flat();
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [], // This is the specific attachment for only this prompt
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...chatHistory,
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = [], { temperature = 0.7 }) {
if (!this.model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const data = await this.openai.getChatCompletions(this.model, messages, {
temperature,
});
if (!data.hasOwnProperty("choices")) return null;
return data.choices[0].message.content;
}
async streamGetChatCompletion(messages = [], { temperature = 0.7 }) {
if (!this.model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const stream = await this.openai.streamChatCompletions(
this.model,
messages,
{
temperature,
n: 1,
}
);
return stream;
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
for await (const event of stream) {
for (const choice of event.choices) {
const delta = choice.delta?.content;
if (!delta) continue;
fullText += delta;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: delta,
close: false,
error: false,
});
}
}
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
AzureOpenAiLLM,
};