anything-llm/collector/scripts/link.py
timothycarambat b583aa74fd remove prints
2023-11-16 17:17:52 -08:00

222 lines
7.7 KiB
Python

import os, json, tempfile
from urllib.parse import urlparse
from requests_html import HTMLSession
from langchain.document_loaders import UnstructuredHTMLLoader
from .link_utils import append_meta, AsyncHTMLSessionFixed
from .utils import tokenize, ada_v2_cost
import requests
from bs4 import BeautifulSoup
# Example Channel URL https://tim.blog/2022/08/09/nft-insider-trading-policy/
def link():
totalTokens = 0
print("[NOTICE]: The first time running this process it will download supporting libraries.\n\n")
fqdn_link = input("Paste in the URL of an online article or blog: ")
if(len(fqdn_link) == 0):
print("Invalid URL!")
exit(1)
session = HTMLSession()
req = session.get(fqdn_link)
if(req.ok == False):
print("Could not reach this url!")
exit(1)
req.html.render()
full_text = None
with tempfile.NamedTemporaryFile(mode = "w") as tmp:
tmp.write(req.html.html)
tmp.seek(0)
loader = UnstructuredHTMLLoader(tmp.name)
data = loader.load()[0]
full_text = data.page_content
tmp.close()
link = append_meta(req, full_text, True)
if(len(full_text) > 0):
totalTokens += len(tokenize(full_text))
source = urlparse(req.url)
output_filename = f"website-{source.netloc}-{source.path.replace('/','_')}.json"
output_path = f"./outputs/website-logs"
transaction_output_filename = f"website-{source.path.replace('/','_')}.json"
transaction_output_dir = f"../server/storage/documents/custom-documents"
if os.path.isdir(output_path) == False:
os.makedirs(output_path)
if os.path.isdir(transaction_output_dir) == False:
os.makedirs(transaction_output_dir)
full_text = append_meta(req, full_text)
with open(f"{output_path}/{output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
with open(f"{transaction_output_dir}/{transaction_output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
else:
print("Could not parse any meaningful data from this link or url.")
exit(1)
print(f"\n\n[Success]: article or link content fetched!")
print(f"////////////////////////////")
print(f"Your estimated cost to embed this data using OpenAI's text-embedding-ada-002 model at $0.0004 / 1K tokens will cost {ada_v2_cost(totalTokens)} using {totalTokens} tokens.")
print(f"////////////////////////////")
exit(0)
async def process_single_link(url):
session = None
try:
print(f"Working on {url}...")
session = AsyncHTMLSessionFixed()
req = await session.get(url)
await req.html.arender()
await session.close()
if not req.ok:
return False, "Could not reach this URL."
full_text = None
with tempfile.NamedTemporaryFile(mode = "w") as tmp:
tmp.write(req.html.html)
tmp.seek(0)
loader = UnstructuredHTMLLoader(tmp.name)
data = loader.load()[0]
full_text = data.page_content
tmp.close()
if full_text:
link_meta = append_meta(req, full_text, True)
source = urlparse(req.url)
transaction_output_dir = "../server/storage/documents/custom-documents"
transaction_output_filename = f"website-{source.netloc}-{source.path.replace('/', '_')}.json"
if not os.path.isdir(transaction_output_dir):
os.makedirs(transaction_output_dir)
file_path = os.path.join(transaction_output_dir, transaction_output_filename)
with open(file_path, 'w', encoding='utf-8') as file:
json.dump(link_meta, file, ensure_ascii=False, indent=4)
return True, "Content fetched and saved."
else:
return False, "Could not parse any meaningful data from this URL."
except Exception as e:
if session is not None:
session.close() # Kill hanging session.
return False, str(e)
def crawler():
prompt = "Paste in root URI of the pages of interest: "
new_link = input(prompt)
filter_value = input("Add a filter value for the url to ensure links don't wander too far. eg: 'my-domain.com': ")
#extract this from the uri provided
root_site = urlparse(new_link).scheme + "://" + urlparse(new_link).hostname
links = []
urls = new_link
links.append(new_link)
grab = requests.get(urls)
soup = BeautifulSoup(grab.text, 'html.parser')
# traverse paragraphs from soup
for link in soup.find_all("a"):
data = link.get('href')
if (data is not None):
fullpath = data if data[0] != '/' else f"{root_site}{data}"
try:
destination = urlparse(fullpath).scheme + "://" + urlparse(fullpath).hostname + (urlparse(fullpath).path if urlparse(fullpath).path is not None else '')
if filter_value in destination:
data = destination.strip()
print (data)
links.append(data)
else:
print (data + " does not apply for linking...")
except:
print (data + " does not apply for linking...")
#parse the links found
parse_links(links)
def links():
links = []
prompt = "Paste in the URL of an online article or blog: "
done = False
while(done == False):
new_link = input(prompt)
if(len(new_link) == 0):
done = True
links = [*set(links)]
continue
links.append(new_link)
prompt = f"\n{len(links)} links in queue. Submit an empty value when done pasting in links to execute collection.\nPaste in the next URL of an online article or blog: "
if(len(links) == 0):
print("No valid links provided!")
exit(1)
parse_links(links)
# parse links from array
def parse_links(links):
totalTokens = 0
for link in links:
print(f"Working on {link}...")
session = HTMLSession()
req = session.get(link, timeout=20)
if not req.ok:
print(f"Could not reach {link} - skipping!")
continue
req.html.render(timeout=10)
full_text = None
with tempfile.NamedTemporaryFile(mode="w") as tmp:
tmp.write(req.html.html)
tmp.seek(0)
loader = UnstructuredHTMLLoader(tmp.name)
data = loader.load()[0]
full_text = data.page_content
tmp.close()
link = append_meta(req, full_text, True)
if len(full_text) > 0:
source = urlparse(req.url)
output_filename = f"website-{source.netloc}-{source.path.replace('/','_')}.json"
output_path = f"./outputs/website-logs"
transaction_output_filename = f"website-{source.path.replace('/','_')}.json"
transaction_output_dir = f"../server/storage/documents/custom-documents"
if not os.path.isdir(output_path):
os.makedirs(output_path)
if not os.path.isdir(transaction_output_dir):
os.makedirs(transaction_output_dir)
full_text = append_meta(req, full_text)
tokenCount = len(tokenize(full_text))
totalTokens += tokenCount
with open(f"{output_path}/{output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
with open(f"{transaction_output_dir}/{transaction_output_filename}", 'w', encoding='utf-8') as file:
json.dump(link, file, ensure_ascii=True, indent=4)
req.session.close()
else:
print(f"Could not parse any meaningful data from {link}.")
continue
print(f"\n\n[Success]: {len(links)} article or link contents fetched!")
print(f"////////////////////////////")
print(f"Your estimated cost to embed this data using OpenAI's text-embedding-ada-002 model at $0.0004 / 1K tokens will cost {ada_v2_cost(totalTokens)} using {totalTokens} tokens.")
print(f"////////////////////////////")