anything-llm/server/utils/AiProviders/lmStudio/index.js
Timothy Carambat 38fc181238
Add multimodality support (#2001)
* Add multimodality support

* Add Bedrock, KoboldCpp,LocalAI,and TextWebGenUI multi-modal

* temp dev build

* patch bad import

* noscrolls for windows dnd

* noscrolls for windows dnd

* update README

* update README

* add multimodal check
2024-07-31 10:47:49 -07:00

169 lines
5.1 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
// hybrid of openAi LLM chat completion for LMStudio
class LMStudioLLM {
constructor(embedder = null, _modelPreference = null) {
if (!process.env.LMSTUDIO_BASE_PATH)
throw new Error("No LMStudio API Base Path was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.lmstudio = new OpenAIApi({
baseURL: process.env.LMSTUDIO_BASE_PATH?.replace(/\/+$/, ""), // here is the URL to your LMStudio instance
apiKey: null,
});
// Prior to LMStudio 0.2.17 the `model` param was not required and you could pass anything
// into that field and it would work. On 0.2.17 LMStudio introduced multi-model chat
// which now has a bug that reports the server model id as "Loaded from Chat UI"
// and any other value will crash inferencing. So until this is patched we will
// try to fetch the `/models` and have the user set it, or just fallback to "Loaded from Chat UI"
// which will not impact users with <v0.2.17 and should work as well once the bug is fixed.
this.model = process.env.LMSTUDIO_MODEL_PREF || "Loaded from Chat UI";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit() {
const limit = process.env.LMSTUDIO_MODEL_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No LMStudio token context limit was set.");
return Number(limit);
}
async isValidChatCompletionModel(_ = "") {
// LMStudio may be anything. The user must do it correctly.
// See comment about this.model declaration in constructor
return true;
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
detail: "auto",
},
});
}
return content.flat();
}
/**
* Construct the user prompt for this model.
* @param {{attachments: import("../../helpers").Attachment[]}} param0
* @returns
*/
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [],
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...chatHistory,
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.model)
throw new Error(
`LMStudio chat: ${this.model} is not valid or defined model for chat completion!`
);
const result = await this.lmstudio.chat.completions.create({
model: this.model,
messages,
temperature,
});
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
return null;
return result.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.model)
throw new Error(
`LMStudio chat: ${this.model} is not valid or defined model for chat completion!`
);
const streamRequest = await this.lmstudio.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
});
return streamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
LMStudioLLM,
};