anything-llm/server/utils/AiProviders/openAi/index.js
Timothy Carambat a8ec0d9584
Compensate for upper OpenAI emedding limit chunk size (#292)
Limit is due to POST body max size. Sufficiently large requests will abort automatically
We should report that error back on the frontend during embedding
Update vectordb providers to return on failed
2023-10-26 10:57:37 -07:00

163 lines
4.7 KiB
JavaScript

const { toChunks } = require("../../helpers");
class OpenAi {
constructor() {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
apiKey: process.env.OPEN_AI_KEY,
});
const openai = new OpenAIApi(config);
this.openai = openai;
// Arbitrary limit to ensure we stay within reasonable POST request size.
this.embeddingChunkLimit = 1_000;
}
isValidChatModel(modelName = "") {
const validModels = ["gpt-4", "gpt-3.5-turbo"];
return validModels.includes(modelName);
}
async isSafe(input = "") {
const { flagged = false, categories = {} } = await this.openai
.createModeration({ input })
.then((json) => {
const res = json.data;
if (!res.hasOwnProperty("results"))
throw new Error("OpenAI moderation: No results!");
if (res.results.length === 0)
throw new Error("OpenAI moderation: No results length!");
return res.results[0];
})
.catch((error) => {
throw new Error(
`OpenAI::CreateModeration failed with: ${error.message}`
);
});
if (!flagged) return { safe: true, reasons: [] };
const reasons = Object.keys(categories)
.map((category) => {
const value = categories[category];
if (value === true) {
return category.replace("/", " or ");
} else {
return null;
}
})
.filter((reason) => !!reason);
return { safe: false, reasons };
}
async sendChat(chatHistory = [], prompt, workspace = {}) {
const model = process.env.OPEN_MODEL_PREF;
if (!this.isValidChatModel(model))
throw new Error(
`OpenAI chat: ${model} is not valid for chat completion!`
);
const textResponse = await this.openai
.createChatCompletion({
model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
n: 1,
messages: [
{ role: "system", content: "" },
...chatHistory,
{ role: "user", content: prompt },
],
})
.then((json) => {
const res = json.data;
if (!res.hasOwnProperty("choices"))
throw new Error("OpenAI chat: No results!");
if (res.choices.length === 0)
throw new Error("OpenAI chat: No results length!");
return res.choices[0].message.content;
})
.catch((error) => {
console.log(error);
throw new Error(
`OpenAI::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async getChatCompletion(messages = [], { temperature = 0.7 }) {
const model = process.env.OPEN_MODEL_PREF || "gpt-3.5-turbo";
const { data } = await this.openai.createChatCompletion({
model,
messages,
temperature,
});
if (!data.hasOwnProperty("choices")) return null;
return data.choices[0].message.content;
}
async embedTextInput(textInput) {
const result = await this.embedChunks(textInput);
return result?.[0] || [];
}
async embedChunks(textChunks = []) {
// Because there is a hard POST limit on how many chunks can be sent at once to OpenAI (~8mb)
// we concurrently execute each max batch of text chunks possible.
// Refer to constructor embeddingChunkLimit for more info.
const embeddingRequests = [];
for (const chunk of toChunks(textChunks, this.embeddingChunkLimit)) {
embeddingRequests.push(
new Promise((resolve) => {
this.openai
.createEmbedding({
model: "text-embedding-ada-002",
input: chunk,
})
.then((res) => {
resolve({ data: res.data?.data, error: null });
})
.catch((e) => {
resolve({ data: [], error: e?.error });
});
})
);
}
const { data = [], error = null } = await Promise.all(
embeddingRequests
).then((results) => {
// If any errors were returned from OpenAI abort the entire sequence because the embeddings
// will be incomplete.
const errors = results
.filter((res) => !!res.error)
.map((res) => res.error)
.flat();
if (errors.length > 0) {
return {
data: [],
error: `(${errors.length}) Embedding Errors! ${errors
.map((error) => `[${error.type}]: ${error.message}`)
.join(", ")}`,
};
}
return {
data: results.map((res) => res?.data || []).flat(),
error: null,
};
});
if (!!error) throw new Error(`OpenAI Failed to embed: ${error}`);
return data.length > 0 &&
data.every((embd) => embd.hasOwnProperty("embedding"))
? data.map((embd) => embd.embedding)
: null;
}
}
module.exports = {
OpenAi,
};