mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-09 00:10:10 +01:00
669d7a396d
* include score value in similarityResponse for weaviate * include score value in si milarityResponse for qdrant * include score value in si milarityResponse for pinecone * include score value in similarityResponse for chroma * include score value in similarityResponse for lancedb * distance to similarity --------- Co-authored-by: timothycarambat <rambat1010@gmail.com>
334 lines
12 KiB
JavaScript
334 lines
12 KiB
JavaScript
const { PineconeClient } = require("@pinecone-database/pinecone");
|
|
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const { toChunks, getLLMProvider } = require("../../helpers");
|
|
const { chatPrompt } = require("../../chats");
|
|
|
|
const Pinecone = {
|
|
name: "Pinecone",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "pinecone")
|
|
throw new Error("Pinecone::Invalid ENV settings");
|
|
|
|
const client = new PineconeClient();
|
|
await client.init({
|
|
apiKey: process.env.PINECONE_API_KEY,
|
|
environment: process.env.PINECONE_ENVIRONMENT,
|
|
});
|
|
const pineconeIndex = client.Index(process.env.PINECONE_INDEX);
|
|
const { status } = await client.describeIndex({
|
|
indexName: process.env.PINECONE_INDEX,
|
|
});
|
|
|
|
if (!status.ready) throw new Error("Pinecode::Index not ready.");
|
|
return { client, pineconeIndex, indexName: process.env.PINECONE_INDEX };
|
|
},
|
|
totalVectors: async function () {
|
|
const { pineconeIndex } = await this.connect();
|
|
const { namespaces } = await pineconeIndex.describeIndexStats1();
|
|
return Object.values(namespaces).reduce(
|
|
(a, b) => a + (b?.vectorCount || 0),
|
|
0
|
|
);
|
|
},
|
|
namespaceCount: async function (_namespace = null) {
|
|
const { pineconeIndex } = await this.connect();
|
|
const namespace = await this.namespace(pineconeIndex, _namespace);
|
|
return namespace?.vectorCount || 0;
|
|
},
|
|
similarityResponse: async function (index, namespace, queryVector) {
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
scores: [],
|
|
};
|
|
const response = await index.query({
|
|
queryRequest: {
|
|
namespace,
|
|
vector: queryVector,
|
|
topK: 4,
|
|
includeMetadata: true,
|
|
},
|
|
});
|
|
|
|
response.matches.forEach((match) => {
|
|
result.contextTexts.push(match.metadata.text);
|
|
result.sourceDocuments.push(match);
|
|
result.scores.push(match.score);
|
|
});
|
|
|
|
return result;
|
|
},
|
|
namespace: async function (index, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const { namespaces } = await index.describeIndexStats1();
|
|
return namespaces.hasOwnProperty(namespace) ? namespaces[namespace] : null;
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { pineconeIndex } = await this.connect();
|
|
return await this.namespaceExists(pineconeIndex, namespace);
|
|
},
|
|
namespaceExists: async function (index, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const { namespaces } = await index.describeIndexStats1();
|
|
return namespaces.hasOwnProperty(namespace);
|
|
},
|
|
deleteVectorsInNamespace: async function (index, namespace = null) {
|
|
await index.delete1({ namespace, deleteAll: true });
|
|
return true;
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
const { pageContent, docId, ...metadata } = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { pineconeIndex } = await this.connect();
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
|
|
for (const chunk of chunks) {
|
|
// Before sending to Pinecone and saving the records to our db
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
const newChunks = chunk.map((chunk) => {
|
|
const id = uuidv4();
|
|
documentVectors.push({ docId, vectorId: id });
|
|
return { ...chunk, id };
|
|
});
|
|
|
|
// Push chunks with new ids to pinecone.
|
|
await pineconeIndex.upsert({
|
|
upsertRequest: {
|
|
vectors: [...newChunks],
|
|
namespace,
|
|
},
|
|
});
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
}
|
|
|
|
// If we are here then we are going to embed and store a novel document.
|
|
// We have to do this manually as opposed to using LangChains `PineconeStore.fromDocuments`
|
|
// because we then cannot atomically control our namespace to granularly find/remove documents
|
|
// from vectordb.
|
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L167
|
|
const textSplitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize: 1000,
|
|
chunkOverlap: 20,
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const LLMConnector = getLLMProvider();
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const vectorValues = await LLMConnector.embedChunks(textChunks);
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
const vectorRecord = {
|
|
id: uuidv4(),
|
|
values: vector,
|
|
// [DO NOT REMOVE]
|
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
|
|
metadata: { ...metadata, text: textChunks[i] },
|
|
};
|
|
|
|
vectors.push(vectorRecord);
|
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
|
}
|
|
} else {
|
|
throw new Error(
|
|
"Could not embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
const { pineconeIndex } = await this.connect();
|
|
console.log("Inserting vectorized chunks into Pinecone.");
|
|
for (const chunk of toChunks(vectors, 100)) {
|
|
chunks.push(chunk);
|
|
await pineconeIndex.upsert({
|
|
upsertRequest: {
|
|
vectors: [...chunk],
|
|
namespace,
|
|
},
|
|
});
|
|
}
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
} catch (e) {
|
|
console.error(e);
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return false;
|
|
}
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace))) return;
|
|
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
|
for (const batchOfVectorIds of toChunks(vectorIds, 1000)) {
|
|
await pineconeIndex.delete1({
|
|
ids: batchOfVectorIds,
|
|
namespace,
|
|
});
|
|
}
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
await DocumentVectors.deleteIds(indexes);
|
|
return true;
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
const stats = await this.namespace(pineconeIndex, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
const details = await this.namespace(pineconeIndex, namespace);
|
|
await this.deleteVectorsInNamespace(pineconeIndex, namespace);
|
|
return {
|
|
message: `Namespace ${namespace} was deleted along with ${details.vectorCount} vectors.`,
|
|
};
|
|
},
|
|
query: async function (reqBody = {}) {
|
|
const { namespace = null, input, workspace = {} } = reqBody;
|
|
if (!namespace || !input) throw new Error("Invalid request body");
|
|
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace))) {
|
|
return {
|
|
response: null,
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
const LLMConnector = getLLMProvider();
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
pineconeIndex,
|
|
namespace,
|
|
queryVector
|
|
);
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${chatPrompt(workspace)}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
|
|
const memory = [prompt, { role: "user", content: input }];
|
|
const responseText = await LLMConnector.getChatCompletion(memory, {
|
|
temperature: workspace?.openAiTemp ?? 0.7,
|
|
});
|
|
|
|
return {
|
|
response: responseText,
|
|
sources: this.curateSources(sourceDocuments),
|
|
message: false,
|
|
};
|
|
},
|
|
// This implementation of chat uses the chat history and modifies the system prompt at execution
|
|
// this is improved over the regular langchain implementation so that chats do not directly modify embeddings
|
|
// because then multi-user support will have all conversations mutating the base vector collection to which then
|
|
// the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs
|
|
chat: async function (reqBody = {}) {
|
|
const {
|
|
namespace = null,
|
|
input,
|
|
workspace = {},
|
|
chatHistory = [],
|
|
} = reqBody;
|
|
if (!namespace || !input) throw new Error("Invalid request body");
|
|
|
|
const { pineconeIndex } = await this.connect();
|
|
if (!(await this.namespaceExists(pineconeIndex, namespace)))
|
|
throw new Error(
|
|
"Invalid namespace - has it been collected and seeded yet?"
|
|
);
|
|
|
|
const LLMConnector = getLLMProvider();
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
pineconeIndex,
|
|
namespace,
|
|
queryVector
|
|
);
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${chatPrompt(workspace)}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
|
|
const memory = [prompt, ...chatHistory, { role: "user", content: input }];
|
|
const responseText = await LLMConnector.getChatCompletion(memory, {
|
|
temperature: workspace?.openAiTemp ?? 0.7,
|
|
});
|
|
|
|
return {
|
|
response: responseText,
|
|
sources: this.curateSources(sourceDocuments),
|
|
message: false,
|
|
};
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
const { metadata = {} } = source;
|
|
if (Object.keys(metadata).length > 0) {
|
|
documents.push({
|
|
...metadata,
|
|
...(source.hasOwnProperty("pageContent")
|
|
? { text: source.pageContent }
|
|
: {}),
|
|
});
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
};
|
|
|
|
module.exports.Pinecone = Pinecone;
|