mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-10 00:40:10 +01:00
5d56ab623b
* WIP Anythropic support for chat, chat and query w/context * Add onboarding support for Anthropic * cleanup * fix Anthropic answer parsing move embedding selector to general util
103 lines
3.0 KiB
JavaScript
103 lines
3.0 KiB
JavaScript
const { AzureOpenAiEmbedder } = require("../../EmbeddingEngines/azureOpenAi");
|
|
|
|
class AzureOpenAiLLM extends AzureOpenAiEmbedder {
|
|
constructor() {
|
|
super();
|
|
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
|
|
if (!process.env.AZURE_OPENAI_ENDPOINT)
|
|
throw new Error("No Azure API endpoint was set.");
|
|
if (!process.env.AZURE_OPENAI_KEY)
|
|
throw new Error("No Azure API key was set.");
|
|
|
|
this.openai = new OpenAIClient(
|
|
process.env.AZURE_OPENAI_ENDPOINT,
|
|
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
|
|
);
|
|
}
|
|
|
|
isValidChatModel(_modelName = "") {
|
|
// The Azure user names their "models" as deployments and they can be any name
|
|
// so we rely on the user to put in the correct deployment as only they would
|
|
// know it.
|
|
return true;
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
}
|
|
|
|
async isSafe(_input = "") {
|
|
// Not implemented by Azure OpenAI so must be stubbed
|
|
return { safe: true, reasons: [] };
|
|
}
|
|
|
|
async sendChat(chatHistory = [], prompt, workspace = {}) {
|
|
const model = process.env.OPEN_MODEL_PREF;
|
|
if (!model)
|
|
throw new Error(
|
|
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
|
|
);
|
|
|
|
const textResponse = await this.openai
|
|
.getChatCompletions(
|
|
model,
|
|
[
|
|
{ role: "system", content: "" },
|
|
...chatHistory,
|
|
{ role: "user", content: prompt },
|
|
],
|
|
{
|
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
|
n: 1,
|
|
}
|
|
)
|
|
.then((res) => {
|
|
if (!res.hasOwnProperty("choices"))
|
|
throw new Error("OpenAI chat: No results!");
|
|
if (res.choices.length === 0)
|
|
throw new Error("OpenAI chat: No results length!");
|
|
return res.choices[0].message.content;
|
|
})
|
|
.catch((error) => {
|
|
console.log(error);
|
|
throw new Error(
|
|
`AzureOpenAI::getChatCompletions failed with: ${error.message}`
|
|
);
|
|
});
|
|
return textResponse;
|
|
}
|
|
|
|
async getChatCompletion(messages = [], { temperature = 0.7 }) {
|
|
const model = process.env.OPEN_MODEL_PREF;
|
|
if (!model)
|
|
throw new Error(
|
|
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
|
|
);
|
|
|
|
const data = await this.openai.getChatCompletions(model, messages, {
|
|
temperature,
|
|
});
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
return data.choices[0].message.content;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
AzureOpenAiLLM,
|
|
};
|