anything-llm/server/utils/AiProviders/azureOpenAi/index.js
Timothy Carambat 5d56ab623b
Anthropic claude 2 support (#305)
* WIP Anythropic support for chat, chat and query w/context

* Add onboarding support for Anthropic

* cleanup

* fix Anthropic answer parsing
move embedding selector to general util
2023-10-30 15:44:03 -07:00

103 lines
3.0 KiB
JavaScript

const { AzureOpenAiEmbedder } = require("../../EmbeddingEngines/azureOpenAi");
class AzureOpenAiLLM extends AzureOpenAiEmbedder {
constructor() {
super();
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
if (!process.env.AZURE_OPENAI_ENDPOINT)
throw new Error("No Azure API endpoint was set.");
if (!process.env.AZURE_OPENAI_KEY)
throw new Error("No Azure API key was set.");
this.openai = new OpenAIClient(
process.env.AZURE_OPENAI_ENDPOINT,
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
);
}
isValidChatModel(_modelName = "") {
// The Azure user names their "models" as deployments and they can be any name
// so we rely on the user to put in the correct deployment as only they would
// know it.
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}
Context:
${contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async isSafe(_input = "") {
// Not implemented by Azure OpenAI so must be stubbed
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}) {
const model = process.env.OPEN_MODEL_PREF;
if (!model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const textResponse = await this.openai
.getChatCompletions(
model,
[
{ role: "system", content: "" },
...chatHistory,
{ role: "user", content: prompt },
],
{
temperature: Number(workspace?.openAiTemp ?? 0.7),
n: 1,
}
)
.then((res) => {
if (!res.hasOwnProperty("choices"))
throw new Error("OpenAI chat: No results!");
if (res.choices.length === 0)
throw new Error("OpenAI chat: No results length!");
return res.choices[0].message.content;
})
.catch((error) => {
console.log(error);
throw new Error(
`AzureOpenAI::getChatCompletions failed with: ${error.message}`
);
});
return textResponse;
}
async getChatCompletion(messages = [], { temperature = 0.7 }) {
const model = process.env.OPEN_MODEL_PREF;
if (!model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const data = await this.openai.getChatCompletions(model, messages, {
temperature,
});
if (!data.hasOwnProperty("choices")) return null;
return data.choices[0].message.content;
}
}
module.exports = {
AzureOpenAiLLM,
};