mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 20:50:09 +01:00
5614e2ed30
* feature: Integrate Astra as vectorDBProvider feature: Integrate Astra as vectorDBProvider * Update .env.example * Add env.example to docker example file Update spellcheck fo Astra Update Astra key for vector selection Update order of AstraDB options Resize Astra logo image to 330x330 Update methods of Astra to take in latest vectorDB params like TopN and more Update Astra interface to support default methods and avoid crash errors from 404 collections Update Astra interface to comply to max chunk insertion limitations Update Astra interface to dynamically set dimensionality from chunk 0 size on creation * reset workspaces --------- Co-authored-by: timothycarambat <rambat1010@gmail.com>
381 lines
12 KiB
JavaScript
381 lines
12 KiB
JavaScript
const { AstraDB: AstraClient } = require("@datastax/astra-db-ts");
|
|
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const {
|
|
toChunks,
|
|
getLLMProvider,
|
|
getEmbeddingEngineSelection,
|
|
} = require("../../helpers");
|
|
|
|
const AstraDB = {
|
|
name: "AstraDB",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "astra")
|
|
throw new Error("AstraDB::Invalid ENV settings");
|
|
|
|
const client = new AstraClient(
|
|
process?.env?.ASTRA_DB_APPLICATION_TOKEN,
|
|
process?.env?.ASTRA_DB_ENDPOINT
|
|
);
|
|
return { client };
|
|
},
|
|
heartbeat: async function () {
|
|
return { heartbeat: Number(new Date()) };
|
|
},
|
|
// Astra interface will return a valid collection object even if the collection
|
|
// does not actually exist. So we run a simple check which will always throw
|
|
// when the table truly does not exist. Faster than iterating all collections.
|
|
isRealCollection: async function (astraCollection = null) {
|
|
if (!astraCollection) return false;
|
|
return await astraCollection
|
|
.countDocuments()
|
|
.then(() => true)
|
|
.catch(() => false);
|
|
},
|
|
totalVectors: async function () {
|
|
const { client } = await this.connect();
|
|
const collectionNames = await this.allNamespaces(client);
|
|
var totalVectors = 0;
|
|
for (const name of collectionNames) {
|
|
const collection = await client.collection(name).catch(() => null);
|
|
const count = await collection.countDocuments().catch(() => 0);
|
|
totalVectors += count ? count : 0;
|
|
}
|
|
return totalVectors;
|
|
},
|
|
namespaceCount: async function (_namespace = null) {
|
|
const { client } = await this.connect();
|
|
const namespace = await this.namespace(client, _namespace);
|
|
return namespace?.vectorCount || 0;
|
|
},
|
|
namespace: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const collection = await client.collection(namespace).catch(() => null);
|
|
if (!(await this.isRealCollection(collection))) return null;
|
|
|
|
const count = await collection.countDocuments().catch((e) => {
|
|
console.error("Astra::namespaceExists", e.message);
|
|
return null;
|
|
});
|
|
|
|
return {
|
|
name: namespace,
|
|
...collection,
|
|
vectorCount: typeof count === "number" ? count : 0,
|
|
};
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { client } = await this.connect();
|
|
return await this.namespaceExists(client, namespace);
|
|
},
|
|
namespaceExists: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const collection = await client.collection(namespace);
|
|
return await this.isRealCollection(collection);
|
|
},
|
|
deleteVectorsInNamespace: async function (client, namespace = null) {
|
|
await client.dropCollection(namespace);
|
|
return true;
|
|
},
|
|
// AstraDB requires a dimension aspect for collection creation
|
|
// we pass this in from the first chunk to infer the dimensions like other
|
|
// providers do.
|
|
getOrCreateCollection: async function (client, namespace, dimensions = null) {
|
|
const isExists = await this.namespaceExists(client, namespace);
|
|
if (!isExists) {
|
|
if (!dimensions)
|
|
throw new Error(
|
|
`AstraDB:getOrCreateCollection Unable to infer vector dimension from input. Open an issue on Github for support.`
|
|
);
|
|
|
|
await client.createCollection(namespace, {
|
|
vector: {
|
|
dimension: dimensions,
|
|
metric: "cosine",
|
|
},
|
|
});
|
|
}
|
|
return await client.collection(namespace);
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
let vectorDimension = null;
|
|
const { pageContent, docId, ...metadata } = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { client } = await this.connect();
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
vectorDimension = chunks[0][0].values.length || null;
|
|
|
|
const collection = await this.getOrCreateCollection(
|
|
client,
|
|
namespace,
|
|
vectorDimension
|
|
);
|
|
if (!(await this.isRealCollection(collection)))
|
|
throw new Error("Failed to create new AstraDB collection!", {
|
|
namespace,
|
|
});
|
|
|
|
for (const chunk of chunks) {
|
|
// Before sending to Astra and saving the records to our db
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
const newChunks = chunk.map((chunk) => {
|
|
const _id = uuidv4();
|
|
documentVectors.push({ docId, vectorId: _id });
|
|
return {
|
|
_id: _id,
|
|
$vector: chunk.values,
|
|
metadata: chunk.metadata || {},
|
|
};
|
|
});
|
|
|
|
await collection.insertMany(newChunks);
|
|
}
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return { vectorized: true, error: null };
|
|
}
|
|
|
|
const textSplitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize:
|
|
getEmbeddingEngineSelection()?.embeddingMaxChunkLength || 1_000,
|
|
chunkOverlap: 20,
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const LLMConnector = getLLMProvider();
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const vectorValues = await LLMConnector.embedChunks(textChunks);
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
if (!vectorDimension) vectorDimension = vector.length;
|
|
const vectorRecord = {
|
|
_id: uuidv4(),
|
|
$vector: vector,
|
|
metadata: { ...metadata, text: textChunks[i] },
|
|
};
|
|
|
|
vectors.push(vectorRecord);
|
|
documentVectors.push({ docId, vectorId: vectorRecord._id });
|
|
}
|
|
} else {
|
|
throw new Error(
|
|
"Could not embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
const { client } = await this.connect();
|
|
const collection = await this.getOrCreateCollection(
|
|
client,
|
|
namespace,
|
|
vectorDimension
|
|
);
|
|
if (!(await this.isRealCollection(collection)))
|
|
throw new Error("Failed to create new AstraDB collection!", {
|
|
namespace,
|
|
});
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
|
|
console.log("Inserting vectorized chunks into Astra DB.");
|
|
|
|
// AstraDB has maximum upsert size of 20 records per-request so we have to use a lower chunk size here
|
|
// in order to do the queries - this takes a lot more time than other providers but there
|
|
// is no way around it. This will save the vector-cache with the same layout, so we don't
|
|
// have to chunk again for cached files.
|
|
for (const chunk of toChunks(vectors, 20)) {
|
|
chunks.push(
|
|
chunk.map((c) => {
|
|
return { id: c._id, values: c.$vector, metadata: c.metadata };
|
|
})
|
|
);
|
|
await collection.insertMany(chunk);
|
|
}
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return { vectorized: true, error: null };
|
|
} catch (e) {
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return { vectorized: false, error: e.message };
|
|
}
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error(
|
|
"Invalid namespace - has it been collected and populated yet?"
|
|
);
|
|
const collection = await client.collection(namespace);
|
|
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
|
for (const id of vectorIds) {
|
|
await collection.deleteMany({
|
|
_id: id,
|
|
});
|
|
}
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
await DocumentVectors.deleteIds(indexes);
|
|
return true;
|
|
},
|
|
performSimilaritySearch: async function ({
|
|
namespace = null,
|
|
input = "",
|
|
LLMConnector = null,
|
|
similarityThreshold = 0.25,
|
|
topN = 4,
|
|
}) {
|
|
if (!namespace || !input || !LLMConnector)
|
|
throw new Error("Invalid request to performSimilaritySearch.");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
contextTexts: [],
|
|
sources: [],
|
|
message:
|
|
"Invalid query - no namespace found for workspace in vector db!",
|
|
};
|
|
}
|
|
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold,
|
|
topN
|
|
);
|
|
|
|
const sources = sourceDocuments.map((metadata, i) => {
|
|
return { ...metadata, text: contextTexts[i] };
|
|
});
|
|
return {
|
|
contextTexts,
|
|
sources: this.curateSources(sources),
|
|
message: false,
|
|
};
|
|
},
|
|
similarityResponse: async function (
|
|
client,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold = 0.25,
|
|
topN = 4
|
|
) {
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
scores: [],
|
|
};
|
|
|
|
const collection = await client.collection(namespace);
|
|
const responses = await collection
|
|
.find(
|
|
{},
|
|
{
|
|
sort: { $vector: queryVector },
|
|
limit: topN,
|
|
includeSimilarity: true,
|
|
}
|
|
)
|
|
.toArray();
|
|
|
|
responses.forEach((response) => {
|
|
if (response.$similarity < similarityThreshold) return;
|
|
result.contextTexts.push(response.metadata.text);
|
|
result.sourceDocuments.push(response);
|
|
result.scores.push(response.$similarity);
|
|
});
|
|
return result;
|
|
},
|
|
allNamespaces: async function (client) {
|
|
try {
|
|
let header = new Headers();
|
|
header.append("Token", client?.httpClient?.applicationToken);
|
|
header.append("Content-Type", "application/json");
|
|
|
|
let raw = JSON.stringify({
|
|
findCollections: {},
|
|
});
|
|
|
|
let requestOptions = {
|
|
method: "POST",
|
|
headers: header,
|
|
body: raw,
|
|
redirect: "follow",
|
|
};
|
|
|
|
const call = await fetch(client?.httpClient?.baseUrl, requestOptions);
|
|
const resp = await call?.text();
|
|
const collections = resp ? JSON.parse(resp)?.status?.collections : [];
|
|
return collections;
|
|
} catch (e) {
|
|
console.error("Astra::AllNamespace", e);
|
|
return [];
|
|
}
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
const stats = await this.namespace(client, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB for namespace" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
const details = await this.namespace(client, namespace);
|
|
await this.deleteVectorsInNamespace(client, namespace);
|
|
return {
|
|
message: `Namespace ${namespace} was deleted along with ${
|
|
details?.vectorCount || "all"
|
|
} vectors.`,
|
|
};
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
if (Object.keys(source).length > 0) {
|
|
const metadata = source.hasOwnProperty("metadata")
|
|
? source.metadata
|
|
: source;
|
|
documents.push({
|
|
...metadata,
|
|
});
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
};
|
|
|
|
module.exports.AstraDB = AstraDB;
|