mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-09 00:10:10 +01:00
8929d96ed0
* Move OpenAI api calls into its own interface/Class move curate sources to be specific for each vectorDBs response for chat/query * remove comment
354 lines
12 KiB
JavaScript
354 lines
12 KiB
JavaScript
const lancedb = require("vectordb");
|
|
const { toChunks } = require("../../helpers");
|
|
const { OpenAIEmbeddings } = require("langchain/embeddings/openai");
|
|
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const { chatPrompt } = require("../../chats");
|
|
const { OpenAi } = require("../../openAi");
|
|
|
|
const LanceDb = {
|
|
uri: `${
|
|
!!process.env.STORAGE_DIR ? `${process.env.STORAGE_DIR}/` : "./storage/"
|
|
}lancedb`,
|
|
name: "LanceDb",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "lancedb")
|
|
throw new Error("LanceDB::Invalid ENV settings");
|
|
|
|
const client = await lancedb.connect(this.uri);
|
|
return { client };
|
|
},
|
|
heartbeat: async function () {
|
|
await this.connect();
|
|
return { heartbeat: Number(new Date()) };
|
|
},
|
|
tables: async function () {
|
|
const fs = require("fs");
|
|
const { client } = await this.connect();
|
|
const dirs = fs.readdirSync(client.uri);
|
|
return dirs.map((folder) => folder.replace(".lance", ""));
|
|
},
|
|
totalIndicies: async function () {
|
|
const { client } = await this.connect();
|
|
const tables = await this.tables();
|
|
let count = 0;
|
|
for (const tableName of tables) {
|
|
const table = await client.openTable(tableName);
|
|
count += await table.countRows();
|
|
}
|
|
return count;
|
|
},
|
|
namespaceCount: async function (_namespace = null) {
|
|
const { client } = await this.connect();
|
|
const exists = await this.namespaceExists(client, _namespace);
|
|
if (!exists) return 0;
|
|
|
|
const table = await client.openTable(_namespace);
|
|
return (await table.countRows()) || 0;
|
|
},
|
|
embedder: function () {
|
|
return new OpenAIEmbeddings({ openAIApiKey: process.env.OPEN_AI_KEY });
|
|
},
|
|
similarityResponse: async function (client, namespace, queryVector) {
|
|
const collection = await client.openTable(namespace);
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
};
|
|
|
|
const response = await collection
|
|
.search(queryVector)
|
|
.metricType("cosine")
|
|
.limit(5)
|
|
.execute();
|
|
|
|
response.forEach((item) => {
|
|
const { vector: _, ...rest } = item;
|
|
result.contextTexts.push(rest.text);
|
|
result.sourceDocuments.push(rest);
|
|
});
|
|
|
|
return result;
|
|
},
|
|
namespace: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const collection = await client.openTable(namespace).catch(() => false);
|
|
if (!collection) return null;
|
|
|
|
return {
|
|
...collection,
|
|
};
|
|
},
|
|
updateOrCreateCollection: async function (client, data = [], namespace) {
|
|
const hasNamespace = await this.hasNamespace(namespace);
|
|
if (hasNamespace) {
|
|
const collection = await client.openTable(namespace);
|
|
await collection.add(data);
|
|
return true;
|
|
}
|
|
|
|
await client.createTable(namespace, data);
|
|
return true;
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { client } = await this.connect();
|
|
const exists = await this.namespaceExists(client, namespace);
|
|
return exists;
|
|
},
|
|
namespaceExists: async function (_client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const collections = await this.tables();
|
|
return collections.includes(namespace);
|
|
},
|
|
deleteVectorsInNamespace: async function (client, namespace = null) {
|
|
const fs = require("fs");
|
|
fs.rm(`${client.uri}/${namespace}.lance`, { recursive: true }, () => null);
|
|
return true;
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { client } = await this.connect();
|
|
const exists = await this.namespaceExists(client, namespace);
|
|
if (!exists) {
|
|
console.error(
|
|
`LanceDB:deleteDocumentFromNamespace - namespace ${namespace} does not exist.`
|
|
);
|
|
return;
|
|
}
|
|
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const table = await client.openTable(namespace);
|
|
const vectorIds = (await DocumentVectors.where(`docId = '${docId}'`)).map(
|
|
(record) => record.vectorId
|
|
);
|
|
|
|
await table.delete(`id IN (${vectorIds.map((v) => `'${v}'`).join(",")})`);
|
|
return true;
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
const { pageContent, docId, ...metadata } = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { client } = await this.connect();
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
const submissions = [];
|
|
|
|
for (const chunk of chunks) {
|
|
chunk.forEach((chunk) => {
|
|
const id = uuidv4();
|
|
const { id: _id, ...metadata } = chunk.metadata;
|
|
documentVectors.push({ docId, vectorId: id });
|
|
submissions.push({ id: id, vector: chunk.values, ...metadata });
|
|
});
|
|
}
|
|
|
|
await this.updateOrCreateCollection(client, submissions, namespace);
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
}
|
|
|
|
// If we are here then we are going to embed and store a novel document.
|
|
// We have to do this manually as opposed to using LangChains `xyz.fromDocuments`
|
|
// because we then cannot atomically control our namespace to granularly find/remove documents
|
|
// from vectordb.
|
|
const textSplitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize: 1000,
|
|
chunkOverlap: 20,
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const openAiConnector = new OpenAi();
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const submissions = [];
|
|
const vectorValues = await openAiConnector.embedChunks(textChunks);
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
const vectorRecord = {
|
|
id: uuidv4(),
|
|
values: vector,
|
|
// [DO NOT REMOVE]
|
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
|
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
|
|
metadata: { ...metadata, text: textChunks[i] },
|
|
};
|
|
|
|
vectors.push(vectorRecord);
|
|
submissions.push({
|
|
id: vectorRecord.id,
|
|
vector: vectorRecord.values,
|
|
...vectorRecord.metadata,
|
|
});
|
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
|
}
|
|
} else {
|
|
console.error(
|
|
"Could not use OpenAI to embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
|
|
|
|
console.log("Inserting vectorized chunks into LanceDB collection.");
|
|
const { client } = await this.connect();
|
|
await this.updateOrCreateCollection(client, submissions, namespace);
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
} catch (e) {
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return false;
|
|
}
|
|
},
|
|
query: async function (reqBody = {}) {
|
|
const { namespace = null, input, workspace = {} } = reqBody;
|
|
if (!namespace || !input) throw new Error("Invalid request body");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
response: null,
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
// LanceDB does not have langchainJS support so we roll our own here.
|
|
const openAiConnector = new OpenAi();
|
|
const queryVector = await openAiConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector
|
|
);
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${chatPrompt(workspace)}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
const memory = [prompt, { role: "user", content: input }];
|
|
const responseText = await openAiConnector.getChatCompletion(memory, {
|
|
temperature: workspace?.openAiTemp ?? 0.7,
|
|
});
|
|
|
|
return {
|
|
response: responseText,
|
|
sources: this.curateSources(sourceDocuments),
|
|
message: false,
|
|
};
|
|
},
|
|
// This implementation of chat uses the chat history and modifies the system prompt at execution
|
|
// this is improved over the regular langchain implementation so that chats do not directly modify embeddings
|
|
// because then multi-user support will have all conversations mutating the base vector collection to which then
|
|
// the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs
|
|
chat: async function (reqBody = {}) {
|
|
const {
|
|
namespace = null,
|
|
input,
|
|
workspace = {},
|
|
chatHistory = [],
|
|
} = reqBody;
|
|
if (!namespace || !input) throw new Error("Invalid request body");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
response: null,
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
const openAiConnector = new OpenAi();
|
|
const queryVector = await openAiConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector
|
|
);
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${chatPrompt(workspace)}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
const memory = [prompt, ...chatHistory, { role: "user", content: input }];
|
|
const responseText = await openAiConnector.getChatCompletion(memory, {
|
|
temperature: workspace?.openAiTemp ?? 0.7,
|
|
});
|
|
|
|
return {
|
|
response: responseText,
|
|
sources: this.curateSources(sourceDocuments),
|
|
message: false,
|
|
};
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
const stats = await this.namespace(client, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB for namespace" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
await this.deleteVectorsInNamespace(client, namespace);
|
|
return {
|
|
message: `Namespace ${namespace} was deleted.`,
|
|
};
|
|
},
|
|
reset: async function () {
|
|
const { client } = await this.connect();
|
|
const fs = require("fs");
|
|
fs.rm(`${client.uri}`, { recursive: true }, () => null);
|
|
return { reset: true };
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
const { text, vector: _v, score: _s, ...metadata } = source;
|
|
if (Object.keys(metadata).length > 0) {
|
|
documents.push({ ...metadata, text });
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
};
|
|
|
|
module.exports.LanceDb = LanceDb;
|