mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 12:40:09 +01:00
dc4ad6b5a9
* wip bg workers for live document sync * Add ability to re-embed specific documents across many workspaces via background queue bgworkser is gated behind expieremental system setting flag that needs to be explictly enabled UI for watching/unwatching docments that are embedded. TODO: UI to easily manage all bg tasks and see run results TODO: UI to enable this feature and background endpoints to manage it * create frontend views and paths Move elements to correct experimental scope * update migration to delete runs on removal of watched document * Add watch support to YouTube transcripts (#1716) * Add watch support to YouTube transcripts refactor how sync is done for supported types * Watch specific files in Confluence space (#1718) Add failure-prune check for runs * create tmp workflow modifications for beta image * create tmp workflow modifications for beta image * create tmp workflow modifications for beta image * dual build update copy of alert modals * update job interval * Add support for live-sync of Github files * update copy for document sync feature * hide Experimental features from UI * update docs links * [FEAT] Implement new settings menu for experimental features (#1735) * implement new settings menu for experimental features * remove unused context save bar --------- Co-authored-by: timothycarambat <rambat1010@gmail.com> * dont run job on boot * unset workflow changes * Add persistent encryption service Relay key to collector so persistent encryption can be used Encrypt any private data in chunkSources used for replay during resync jobs * update jsDOC * Linting and organization * update modal copy for feature --------- Co-authored-by: Sean Hatfield <seanhatfield5@gmail.com>
487 lines
16 KiB
JavaScript
487 lines
16 KiB
JavaScript
const { default: weaviate } = require("weaviate-ts-client");
|
|
const { TextSplitter } = require("../../TextSplitter");
|
|
const { SystemSettings } = require("../../../models/systemSettings");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const { toChunks, getEmbeddingEngineSelection } = require("../../helpers");
|
|
const { camelCase } = require("../../helpers/camelcase");
|
|
const { sourceIdentifier } = require("../../chats");
|
|
|
|
const Weaviate = {
|
|
name: "Weaviate",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "weaviate")
|
|
throw new Error("Weaviate::Invalid ENV settings");
|
|
|
|
const weaviateUrl = new URL(process.env.WEAVIATE_ENDPOINT);
|
|
const options = {
|
|
scheme: weaviateUrl.protocol?.replace(":", "") || "http",
|
|
host: weaviateUrl?.host,
|
|
...(process.env?.WEAVIATE_API_KEY?.length > 0
|
|
? { apiKey: new weaviate.ApiKey(process.env?.WEAVIATE_API_KEY) }
|
|
: {}),
|
|
};
|
|
const client = weaviate.client(options);
|
|
const isAlive = await await client.misc.liveChecker().do();
|
|
if (!isAlive)
|
|
throw new Error(
|
|
"Weaviate::Invalid Alive signal received - is the service online?"
|
|
);
|
|
return { client };
|
|
},
|
|
heartbeat: async function () {
|
|
await this.connect();
|
|
return { heartbeat: Number(new Date()) };
|
|
},
|
|
totalVectors: async function () {
|
|
const { client } = await this.connect();
|
|
const collectionNames = await this.allNamespaces(client);
|
|
var totalVectors = 0;
|
|
for (const name of collectionNames) {
|
|
totalVectors += await this.namespaceCountWithClient(client, name);
|
|
}
|
|
return totalVectors;
|
|
},
|
|
namespaceCountWithClient: async function (client, namespace) {
|
|
try {
|
|
const response = await client.graphql
|
|
.aggregate()
|
|
.withClassName(camelCase(namespace))
|
|
.withFields("meta { count }")
|
|
.do();
|
|
return (
|
|
response?.data?.Aggregate?.[camelCase(namespace)]?.[0]?.meta?.count || 0
|
|
);
|
|
} catch (e) {
|
|
console.error(`Weaviate:namespaceCountWithClient`, e.message);
|
|
return 0;
|
|
}
|
|
},
|
|
namespaceCount: async function (namespace = null) {
|
|
try {
|
|
const { client } = await this.connect();
|
|
const response = await client.graphql
|
|
.aggregate()
|
|
.withClassName(camelCase(namespace))
|
|
.withFields("meta { count }")
|
|
.do();
|
|
|
|
return (
|
|
response?.data?.Aggregate?.[camelCase(namespace)]?.[0]?.meta?.count || 0
|
|
);
|
|
} catch (e) {
|
|
console.error(`Weaviate:namespaceCountWithClient`, e.message);
|
|
return 0;
|
|
}
|
|
},
|
|
similarityResponse: async function (
|
|
client,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold = 0.25,
|
|
topN = 4,
|
|
filterIdentifiers = []
|
|
) {
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
scores: [],
|
|
};
|
|
|
|
const weaviateClass = await this.namespace(client, namespace);
|
|
const fields =
|
|
weaviateClass.properties?.map((prop) => prop.name)?.join(" ") ?? "";
|
|
const queryResponse = await client.graphql
|
|
.get()
|
|
.withClassName(camelCase(namespace))
|
|
.withFields(`${fields} _additional { id certainty }`)
|
|
.withNearVector({ vector: queryVector })
|
|
.withLimit(topN)
|
|
.do();
|
|
|
|
const responses = queryResponse?.data?.Get?.[camelCase(namespace)];
|
|
responses.forEach((response) => {
|
|
// In Weaviate we have to pluck id from _additional and spread it into the rest
|
|
// of the properties.
|
|
const {
|
|
_additional: { id, certainty },
|
|
...rest
|
|
} = response;
|
|
if (certainty < similarityThreshold) return;
|
|
if (filterIdentifiers.includes(sourceIdentifier(rest))) {
|
|
console.log(
|
|
"Weaviate: A source was filtered from context as it's parent document is pinned."
|
|
);
|
|
return;
|
|
}
|
|
result.contextTexts.push(rest.text);
|
|
result.sourceDocuments.push({ ...rest, id });
|
|
result.scores.push(certainty);
|
|
});
|
|
|
|
return result;
|
|
},
|
|
allNamespaces: async function (client) {
|
|
try {
|
|
const { classes = [] } = await client.schema.getter().do();
|
|
return classes.map((classObj) => classObj.class);
|
|
} catch (e) {
|
|
console.error("Weaviate::AllNamespace", e);
|
|
return [];
|
|
}
|
|
},
|
|
namespace: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
if (!(await this.namespaceExists(client, namespace))) return null;
|
|
|
|
const weaviateClass = await client.schema
|
|
.classGetter()
|
|
.withClassName(camelCase(namespace))
|
|
.do();
|
|
|
|
return {
|
|
...weaviateClass,
|
|
vectorCount: await this.namespaceCount(namespace),
|
|
};
|
|
},
|
|
addVectors: async function (client, vectors = []) {
|
|
const response = { success: true, errors: new Set([]) };
|
|
const results = await client.batch
|
|
.objectsBatcher()
|
|
.withObjects(...vectors)
|
|
.do();
|
|
|
|
results.forEach((res) => {
|
|
const { status, errors = [] } = res.result;
|
|
if (status === "SUCCESS" || errors.length === 0) return;
|
|
response.success = false;
|
|
response.errors.add(errors.error?.[0]?.message || null);
|
|
});
|
|
|
|
response.errors = [...response.errors];
|
|
return response;
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { client } = await this.connect();
|
|
const weaviateClasses = await this.allNamespaces(client);
|
|
return weaviateClasses.includes(camelCase(namespace));
|
|
},
|
|
namespaceExists: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const weaviateClasses = await this.allNamespaces(client);
|
|
return weaviateClasses.includes(camelCase(namespace));
|
|
},
|
|
deleteVectorsInNamespace: async function (client, namespace = null) {
|
|
await client.schema.classDeleter().withClassName(camelCase(namespace)).do();
|
|
return true;
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null,
|
|
skipCache = false
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
const {
|
|
pageContent,
|
|
docId,
|
|
id: _id, // Weaviate will abort if `id` is present in properties
|
|
...metadata
|
|
} = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
if (skipCache) {
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { client } = await this.connect();
|
|
const weaviateClassExits = await this.hasNamespace(namespace);
|
|
if (!weaviateClassExits) {
|
|
await client.schema
|
|
.classCreator()
|
|
.withClass({
|
|
class: camelCase(namespace),
|
|
description: `Class created by AnythingLLM named ${camelCase(
|
|
namespace
|
|
)}`,
|
|
vectorizer: "none",
|
|
})
|
|
.do();
|
|
}
|
|
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
|
|
for (const chunk of chunks) {
|
|
// Before sending to Weaviate and saving the records to our db
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
chunk.forEach((chunk) => {
|
|
const id = uuidv4();
|
|
const flattenedMetadata = this.flattenObjectForWeaviate(
|
|
chunk.properties ?? chunk.metadata
|
|
);
|
|
documentVectors.push({ docId, vectorId: id });
|
|
const vectorRecord = {
|
|
id,
|
|
class: camelCase(namespace),
|
|
vector: chunk.vector || chunk.values || [],
|
|
properties: { ...flattenedMetadata },
|
|
};
|
|
vectors.push(vectorRecord);
|
|
});
|
|
|
|
const { success: additionResult, errors = [] } =
|
|
await this.addVectors(client, vectors);
|
|
if (!additionResult) {
|
|
console.error("Weaviate::addVectors failed to insert", errors);
|
|
throw new Error("Error embedding into Weaviate");
|
|
}
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return { vectorized: true, error: null };
|
|
}
|
|
}
|
|
|
|
// If we are here then we are going to embed and store a novel document.
|
|
// We have to do this manually as opposed to using LangChains `Chroma.fromDocuments`
|
|
// because we then cannot atomically control our namespace to granularly find/remove documents
|
|
// from vectordb.
|
|
const EmbedderEngine = getEmbeddingEngineSelection();
|
|
const textSplitter = new TextSplitter({
|
|
chunkSize: TextSplitter.determineMaxChunkSize(
|
|
await SystemSettings.getValueOrFallback({
|
|
label: "text_splitter_chunk_size",
|
|
}),
|
|
EmbedderEngine?.embeddingMaxChunkLength
|
|
),
|
|
chunkOverlap: await SystemSettings.getValueOrFallback(
|
|
{ label: "text_splitter_chunk_overlap" },
|
|
20
|
|
),
|
|
chunkHeaderMeta: {
|
|
sourceDocument: metadata?.title,
|
|
published: metadata?.published || "unknown",
|
|
},
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const vectorValues = await EmbedderEngine.embedChunks(textChunks);
|
|
const submission = {
|
|
ids: [],
|
|
vectors: [],
|
|
properties: [],
|
|
};
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
const flattenedMetadata = this.flattenObjectForWeaviate(metadata);
|
|
const vectorRecord = {
|
|
class: camelCase(namespace),
|
|
id: uuidv4(),
|
|
vector: vector,
|
|
// [DO NOT REMOVE]
|
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
|
// https://github.com/hwchase17/langchainjs/blob/5485c4af50c063e257ad54f4393fa79e0aff6462/langchain/src/vectorstores/weaviate.ts#L133
|
|
properties: { ...flattenedMetadata, text: textChunks[i] },
|
|
};
|
|
|
|
submission.ids.push(vectorRecord.id);
|
|
submission.vectors.push(vectorRecord.values);
|
|
submission.properties.push(metadata);
|
|
|
|
vectors.push(vectorRecord);
|
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
|
}
|
|
} else {
|
|
throw new Error(
|
|
"Could not embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
|
|
const { client } = await this.connect();
|
|
const weaviateClassExits = await this.hasNamespace(namespace);
|
|
if (!weaviateClassExits) {
|
|
await client.schema
|
|
.classCreator()
|
|
.withClass({
|
|
class: camelCase(namespace),
|
|
description: `Class created by AnythingLLM named ${camelCase(
|
|
namespace
|
|
)}`,
|
|
vectorizer: "none",
|
|
})
|
|
.do();
|
|
}
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
|
|
|
|
console.log("Inserting vectorized chunks into Weaviate collection.");
|
|
const { success: additionResult, errors = [] } = await this.addVectors(
|
|
client,
|
|
vectors
|
|
);
|
|
if (!additionResult) {
|
|
console.error("Weaviate::addVectors failed to insert", errors);
|
|
throw new Error("Error embedding into Weaviate");
|
|
}
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return { vectorized: true, error: null };
|
|
} catch (e) {
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return { vectorized: false, error: e.message };
|
|
}
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) return;
|
|
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
for (const doc of knownDocuments) {
|
|
await client.data
|
|
.deleter()
|
|
.withClassName(camelCase(namespace))
|
|
.withId(doc.vectorId)
|
|
.do();
|
|
}
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
await DocumentVectors.deleteIds(indexes);
|
|
return true;
|
|
},
|
|
performSimilaritySearch: async function ({
|
|
namespace = null,
|
|
input = "",
|
|
LLMConnector = null,
|
|
similarityThreshold = 0.25,
|
|
topN = 4,
|
|
filterIdentifiers = [],
|
|
}) {
|
|
if (!namespace || !input || !LLMConnector)
|
|
throw new Error("Invalid request to performSimilaritySearch.");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
contextTexts: [],
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold,
|
|
topN,
|
|
filterIdentifiers
|
|
);
|
|
|
|
const sources = sourceDocuments.map((metadata, i) => {
|
|
return { ...metadata, text: contextTexts[i] };
|
|
});
|
|
return {
|
|
contextTexts,
|
|
sources: this.curateSources(sources),
|
|
message: false,
|
|
};
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { client } = await this.connect();
|
|
const stats = await this.namespace(client, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB for namespace" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { client } = await this.connect();
|
|
const details = await this.namespace(client, namespace);
|
|
await this.deleteVectorsInNamespace(client, namespace);
|
|
return {
|
|
message: `Namespace ${camelCase(namespace)} was deleted along with ${
|
|
details?.vectorCount
|
|
} vectors.`,
|
|
};
|
|
},
|
|
reset: async function () {
|
|
const { client } = await this.connect();
|
|
const weaviateClasses = await this.allNamespaces(client);
|
|
for (const weaviateClass of weaviateClasses) {
|
|
await client.schema.classDeleter().withClassName(weaviateClass).do();
|
|
}
|
|
return { reset: true };
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
if (Object.keys(source).length > 0) {
|
|
const metadata = source.hasOwnProperty("metadata")
|
|
? source.metadata
|
|
: source;
|
|
documents.push({ ...metadata });
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
flattenObjectForWeaviate: function (obj = {}) {
|
|
// Note this function is not generic, it is designed specifically for Weaviate
|
|
// https://weaviate.io/developers/weaviate/config-refs/datatypes#introduction
|
|
// Credit to LangchainJS
|
|
// https://github.com/hwchase17/langchainjs/blob/5485c4af50c063e257ad54f4393fa79e0aff6462/langchain/src/vectorstores/weaviate.ts#L11C1-L50C3
|
|
const flattenedObject = {};
|
|
|
|
for (const key in obj) {
|
|
if (!Object.hasOwn(obj, key) || key === "id") {
|
|
continue;
|
|
}
|
|
const value = obj[key];
|
|
if (typeof obj[key] === "object" && !Array.isArray(value)) {
|
|
const recursiveResult = this.flattenObjectForWeaviate(value);
|
|
|
|
for (const deepKey in recursiveResult) {
|
|
if (Object.hasOwn(obj, key)) {
|
|
flattenedObject[`${key}_${deepKey}`] = recursiveResult[deepKey];
|
|
}
|
|
}
|
|
} else if (Array.isArray(value)) {
|
|
if (
|
|
value.length > 0 &&
|
|
typeof value[0] !== "object" &&
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
value.every((el) => typeof el === typeof value[0])
|
|
) {
|
|
// Weaviate only supports arrays of primitive types,
|
|
// where all elements are of the same type
|
|
flattenedObject[key] = value;
|
|
}
|
|
} else {
|
|
flattenedObject[key] = value;
|
|
}
|
|
}
|
|
|
|
return flattenedObject;
|
|
},
|
|
};
|
|
|
|
module.exports.Weaviate = Weaviate;
|