anything-llm/server/utils/AiProviders/huggingface/index.js
2024-05-16 17:25:05 -07:00

131 lines
3.7 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
class HuggingFaceLLM {
constructor(embedder = null, _modelPreference = null) {
if (!process.env.HUGGING_FACE_LLM_ENDPOINT)
throw new Error("No HuggingFace Inference Endpoint was set.");
if (!process.env.HUGGING_FACE_LLM_API_KEY)
throw new Error("No HuggingFace Access Token was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.openai = new OpenAIApi({
baseURL: `${process.env.HUGGING_FACE_LLM_ENDPOINT}/v1`,
apiKey: process.env.HUGGING_FACE_LLM_API_KEY,
});
// When using HF inference server - the model param is not required so
// we can stub it here. HF Endpoints can only run one model at a time.
// We set to 'tgi' so that endpoint for HF can accept message format
this.model = "tgi";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.2;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
const limit = process.env.HUGGING_FACE_LLM_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No HuggingFace token context limit was set.");
return Number(limit);
}
async isValidChatCompletionModel(_ = "") {
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
// System prompt it not enabled for HF model chats
const prompt = {
role: "user",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
const assistantResponse = {
role: "assistant",
content: "Okay, I will follow those instructions",
};
return [
prompt,
assistantResponse,
...chatHistory,
{ role: "user", content: userPrompt },
];
}
async isSafe(_input = "") {
// Not implemented so must be stubbed
return { safe: true, reasons: [] };
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await this.openai.createChatCompletion({
model: this.model,
messages,
temperature,
});
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
return null;
return result.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
});
return streamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
HuggingFaceLLM,
};