mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-09 00:10:10 +01:00
2a28415de4
resolves #184
145 lines
4.7 KiB
JavaScript
145 lines
4.7 KiB
JavaScript
const { toChunks } = require("../../helpers");
|
|
|
|
class AzureOpenAi {
|
|
constructor() {
|
|
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
|
|
const openai = new OpenAIClient(
|
|
process.env.AZURE_OPENAI_ENDPOINT,
|
|
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
|
|
);
|
|
this.openai = openai;
|
|
|
|
// The maximum amount of "inputs" that OpenAI API can process in a single call.
|
|
// https://learn.microsoft.com/en-us/azure/ai-services/openai/faq#i-am-trying-to-use-embeddings-and-received-the-error--invalidrequesterror--too-many-inputs--the-max-number-of-inputs-is-1---how-do-i-fix-this-:~:text=consisting%20of%20up%20to%2016%20inputs%20per%20API%20request
|
|
this.embeddingChunkLimit = 16;
|
|
}
|
|
|
|
isValidChatModel(_modelName = "") {
|
|
// The Azure user names their "models" as deployments and they can be any name
|
|
// so we rely on the user to put in the correct deployment as only they would
|
|
// know it.
|
|
return true;
|
|
}
|
|
|
|
async isSafe(_input = "") {
|
|
// Not implemented by Azure OpenAI so must be stubbed
|
|
return { safe: true, reasons: [] };
|
|
}
|
|
|
|
async sendChat(chatHistory = [], prompt, workspace = {}) {
|
|
const model = process.env.OPEN_MODEL_PREF;
|
|
if (!model)
|
|
throw new Error(
|
|
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
|
|
);
|
|
|
|
const textResponse = await this.openai
|
|
.getChatCompletions(
|
|
model,
|
|
[
|
|
{ role: "system", content: "" },
|
|
...chatHistory,
|
|
{ role: "user", content: prompt },
|
|
],
|
|
{
|
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
|
n: 1,
|
|
}
|
|
)
|
|
.then((res) => {
|
|
if (!res.hasOwnProperty("choices"))
|
|
throw new Error("OpenAI chat: No results!");
|
|
if (res.choices.length === 0)
|
|
throw new Error("OpenAI chat: No results length!");
|
|
return res.choices[0].message.content;
|
|
})
|
|
.catch((error) => {
|
|
console.log(error);
|
|
throw new Error(
|
|
`AzureOpenAI::getChatCompletions failed with: ${error.message}`
|
|
);
|
|
});
|
|
return textResponse;
|
|
}
|
|
|
|
async getChatCompletion(messages = [], { temperature = 0.7 }) {
|
|
const model = process.env.OPEN_MODEL_PREF;
|
|
if (!model)
|
|
throw new Error(
|
|
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
|
|
);
|
|
|
|
const data = await this.openai.getChatCompletions(model, messages, {
|
|
temperature,
|
|
});
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
return data.choices[0].message.content;
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(textInput);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
const textEmbeddingModel =
|
|
process.env.EMBEDDING_MODEL_PREF || "text-embedding-ada-002";
|
|
if (!textEmbeddingModel)
|
|
throw new Error(
|
|
"No EMBEDDING_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an embedding model."
|
|
);
|
|
|
|
// Because there is a limit on how many chunks can be sent at once to Azure OpenAI
|
|
// we concurrently execute each max batch of text chunks possible.
|
|
// Refer to constructor embeddingChunkLimit for more info.
|
|
const embeddingRequests = [];
|
|
for (const chunk of toChunks(textChunks, this.embeddingChunkLimit)) {
|
|
embeddingRequests.push(
|
|
new Promise((resolve) => {
|
|
this.openai
|
|
.getEmbeddings(textEmbeddingModel, chunk)
|
|
.then((res) => {
|
|
resolve({ data: res.data, error: null });
|
|
})
|
|
.catch((e) => {
|
|
resolve({ data: [], error: e?.error });
|
|
});
|
|
})
|
|
);
|
|
}
|
|
|
|
const { data = [], error = null } = await Promise.all(
|
|
embeddingRequests
|
|
).then((results) => {
|
|
// If any errors were returned from Azure abort the entire sequence because the embeddings
|
|
// will be incomplete.
|
|
const errors = results
|
|
.filter((res) => !!res.error)
|
|
.map((res) => res.error)
|
|
.flat();
|
|
if (errors.length > 0) {
|
|
return {
|
|
data: [],
|
|
error: `(${errors.length}) Embedding Errors! ${errors
|
|
.map((error) => `[${error.type}]: ${error.message}`)
|
|
.join(", ")}`,
|
|
};
|
|
}
|
|
return {
|
|
data: results.map((res) => res?.data || []).flat(),
|
|
error: null,
|
|
};
|
|
});
|
|
|
|
if (!!error) throw new Error(`Azure OpenAI Failed to embed: ${error}`);
|
|
return data.length > 0 &&
|
|
data.every((embd) => embd.hasOwnProperty("embedding"))
|
|
? data.map((embd) => embd.embedding)
|
|
: null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
AzureOpenAi,
|
|
};
|