mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-09 00:10:10 +01:00
a126b5f5aa
* WIP converted all sqlite models into prisma calls * modify db setup and fix ApiKey model calls in admin.js * renaming function params to be consistent * converted adminEndpoints to utilize prisma orm * converted chatEndpoints to utilize prisma orm * converted inviteEndpoints to utilize prisma orm * converted systemEndpoints to utilize prisma orm * converted workspaceEndpoints to utilize prisma orm * converting sql queries to prisma calls * fixed default param bug for orderBy and limit * fixed typo for workspace chats * fixed order of deletion to account for sql relations * fix invite CRUD and workspace management CRUD * fixed CRUD for api keys * created prisma setup scripts/docs for understanding how to use prisma * prisma dependency change * removing unneeded console.logs * removing unneeded sql escape function * linting and creating migration script * migration from depreciated sqlite script update * removing unneeded migrations in prisma folder * create backup of old sqlite db and use transactions to ensure all operations complete successfully * adding migrations to gitignore * updated PRISMA.md docs for info on how to use sqlite migration script * comment changes * adding back migrations folder to repo * Reviewing SQL and prisma integraiton on fresh repo * update inline key replacement * ensure migration script executes and maps foreign_keys regardless of db ordering * run migration endpoint * support new prisma backend * bump version * change migration call --------- Co-authored-by: timothycarambat <rambat1010@gmail.com>
505 lines
17 KiB
JavaScript
505 lines
17 KiB
JavaScript
const { default: weaviate } = require("weaviate-ts-client");
|
|
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const { toChunks, getLLMProvider } = require("../../helpers");
|
|
const { chatPrompt } = require("../../chats");
|
|
const { camelCase } = require("../../helpers/camelcase");
|
|
|
|
const Weaviate = {
|
|
name: "Weaviate",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "weaviate")
|
|
throw new Error("Weaviate::Invalid ENV settings");
|
|
|
|
const weaviateUrl = new URL(process.env.WEAVIATE_ENDPOINT);
|
|
const options = {
|
|
scheme: weaviateUrl.protocol?.replace(":", "") || "http",
|
|
host: weaviateUrl?.host,
|
|
...(process.env?.WEAVIATE_API_KEY?.length > 0
|
|
? { apiKey: new weaviate.ApiKey(process.env?.WEAVIATE_API_KEY) }
|
|
: {}),
|
|
};
|
|
const client = weaviate.client(options);
|
|
const isAlive = await await client.misc.liveChecker().do();
|
|
if (!isAlive)
|
|
throw new Error(
|
|
"Weaviate::Invalid Alive signal received - is the service online?"
|
|
);
|
|
return { client };
|
|
},
|
|
heartbeat: async function () {
|
|
await this.connect();
|
|
return { heartbeat: Number(new Date()) };
|
|
},
|
|
totalVectors: async function () {
|
|
const { client } = await this.connect();
|
|
const collectionNames = await this.allNamespaces(client);
|
|
var totalVectors = 0;
|
|
for (const name of collectionNames) {
|
|
totalVectors += await this.namespaceCountWithClient(client, name);
|
|
}
|
|
return totalVectors;
|
|
},
|
|
namespaceCountWithClient: async function (client, namespace) {
|
|
try {
|
|
const response = await client.graphql
|
|
.aggregate()
|
|
.withClassName(camelCase(namespace))
|
|
.withFields("meta { count }")
|
|
.do();
|
|
return (
|
|
response?.data?.Aggregate?.[camelCase(namespace)]?.[0]?.meta?.count || 0
|
|
);
|
|
} catch (e) {
|
|
console.error(`Weaviate:namespaceCountWithClient`, e.message);
|
|
return 0;
|
|
}
|
|
},
|
|
namespaceCount: async function (namespace = null) {
|
|
try {
|
|
const { client } = await this.connect();
|
|
const response = await client.graphql
|
|
.aggregate()
|
|
.withClassName(camelCase(namespace))
|
|
.withFields("meta { count }")
|
|
.do();
|
|
|
|
return (
|
|
response?.data?.Aggregate?.[camelCase(namespace)]?.[0]?.meta?.count || 0
|
|
);
|
|
} catch (e) {
|
|
console.error(`Weaviate:namespaceCountWithClient`, e.message);
|
|
return 0;
|
|
}
|
|
},
|
|
similarityResponse: async function (client, namespace, queryVector) {
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
};
|
|
|
|
const weaviateClass = await this.namespace(client, namespace);
|
|
const fields = weaviateClass.properties.map((prop) => prop.name).join(" ");
|
|
const queryResponse = await client.graphql
|
|
.get()
|
|
.withClassName(camelCase(namespace))
|
|
.withFields(`${fields} _additional { id }`)
|
|
.withNearVector({ vector: queryVector })
|
|
.withLimit(4)
|
|
.do();
|
|
|
|
const responses = queryResponse?.data?.Get?.[camelCase(namespace)];
|
|
responses.forEach((response) => {
|
|
// In Weaviate we have to pluck id from _additional and spread it into the rest
|
|
// of the properties.
|
|
const {
|
|
_additional: { id },
|
|
...rest
|
|
} = response;
|
|
result.contextTexts.push(rest.text);
|
|
result.sourceDocuments.push({ ...rest, id });
|
|
});
|
|
|
|
return result;
|
|
},
|
|
allNamespaces: async function (client) {
|
|
try {
|
|
const { classes = [] } = await client.schema.getter().do();
|
|
return classes.map((classObj) => classObj.class);
|
|
} catch (e) {
|
|
console.error("Weaviate::AllNamespace", e);
|
|
return [];
|
|
}
|
|
},
|
|
namespace: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
if (!(await this.namespaceExists(client, namespace))) return null;
|
|
|
|
const weaviateClass = await client.schema
|
|
.classGetter()
|
|
.withClassName(camelCase(namespace))
|
|
.do();
|
|
|
|
return {
|
|
...weaviateClass,
|
|
vectorCount: await this.namespaceCount(namespace),
|
|
};
|
|
},
|
|
addVectors: async function (client, vectors = []) {
|
|
const response = { success: true, errors: new Set([]) };
|
|
const results = await client.batch
|
|
.objectsBatcher()
|
|
.withObjects(...vectors)
|
|
.do();
|
|
|
|
results.forEach((res) => {
|
|
const { status, errors = [] } = res.result;
|
|
if (status === "SUCCESS" || errors.length === 0) return;
|
|
response.success = false;
|
|
response.errors.add(errors.error?.[0]?.message || null);
|
|
});
|
|
|
|
response.errors = [...response.errors];
|
|
return response;
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { client } = await this.connect();
|
|
const weaviateClasses = await this.allNamespaces(client);
|
|
return weaviateClasses.includes(camelCase(namespace));
|
|
},
|
|
namespaceExists: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const weaviateClasses = await this.allNamespaces(client);
|
|
return weaviateClasses.includes(camelCase(namespace));
|
|
},
|
|
deleteVectorsInNamespace: async function (client, namespace = null) {
|
|
await client.schema.classDeleter().withClassName(camelCase(namespace)).do();
|
|
return true;
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
const {
|
|
pageContent,
|
|
docId,
|
|
id: _id, // Weaviate will abort if `id` is present in properties
|
|
...metadata
|
|
} = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { client } = await this.connect();
|
|
const weaviateClassExits = await this.hasNamespace(namespace);
|
|
if (!weaviateClassExits) {
|
|
await client.schema
|
|
.classCreator()
|
|
.withClass({
|
|
class: camelCase(namespace),
|
|
description: `Class created by AnythingLLM named ${camelCase(
|
|
namespace
|
|
)}`,
|
|
vectorizer: "none",
|
|
})
|
|
.do();
|
|
}
|
|
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
|
|
for (const chunk of chunks) {
|
|
// Before sending to Weaviate and saving the records to our db
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
chunk.forEach((chunk) => {
|
|
const id = uuidv4();
|
|
const flattenedMetadata = this.flattenObjectForWeaviate(
|
|
chunk.properties
|
|
);
|
|
documentVectors.push({ docId, vectorId: id });
|
|
const vectorRecord = {
|
|
id,
|
|
class: camelCase(namespace),
|
|
vector: chunk.vector || chunk.values || [],
|
|
properties: { ...flattenedMetadata },
|
|
};
|
|
vectors.push(vectorRecord);
|
|
});
|
|
|
|
const { success: additionResult, errors = [] } =
|
|
await this.addVectors(client, vectors);
|
|
if (!additionResult) {
|
|
console.error("Weaviate::addVectors failed to insert", errors);
|
|
throw new Error("Error embedding into Weaviate");
|
|
}
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
}
|
|
|
|
// If we are here then we are going to embed and store a novel document.
|
|
// We have to do this manually as opposed to using LangChains `Chroma.fromDocuments`
|
|
// because we then cannot atomically control our namespace to granularly find/remove documents
|
|
// from vectordb.
|
|
const textSplitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize: 1000,
|
|
chunkOverlap: 20,
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const LLMConnector = getLLMProvider();
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const vectorValues = await LLMConnector.embedChunks(textChunks);
|
|
const submission = {
|
|
ids: [],
|
|
vectors: [],
|
|
properties: [],
|
|
};
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
const flattenedMetadata = this.flattenObjectForWeaviate(metadata);
|
|
const vectorRecord = {
|
|
class: camelCase(namespace),
|
|
id: uuidv4(),
|
|
vector: vector,
|
|
// [DO NOT REMOVE]
|
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
|
// https://github.com/hwchase17/langchainjs/blob/5485c4af50c063e257ad54f4393fa79e0aff6462/langchain/src/vectorstores/weaviate.ts#L133
|
|
properties: { ...flattenedMetadata, text: textChunks[i] },
|
|
};
|
|
|
|
submission.ids.push(vectorRecord.id);
|
|
submission.vectors.push(vectorRecord.values);
|
|
submission.properties.push(metadata);
|
|
|
|
vectors.push(vectorRecord);
|
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
|
}
|
|
} else {
|
|
console.error(
|
|
"Could not use OpenAI to embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
|
|
const { client } = await this.connect();
|
|
const weaviateClassExits = await this.hasNamespace(namespace);
|
|
if (!weaviateClassExits) {
|
|
await client.schema
|
|
.classCreator()
|
|
.withClass({
|
|
class: camelCase(namespace),
|
|
description: `Class created by AnythingLLM named ${camelCase(
|
|
namespace
|
|
)}`,
|
|
vectorizer: "none",
|
|
})
|
|
.do();
|
|
}
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
|
|
|
|
console.log("Inserting vectorized chunks into Weaviate collection.");
|
|
const { success: additionResult, errors = [] } = await this.addVectors(
|
|
client,
|
|
vectors
|
|
);
|
|
if (!additionResult) {
|
|
console.error("Weaviate::addVectors failed to insert", errors);
|
|
throw new Error("Error embedding into Weaviate");
|
|
}
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
} catch (e) {
|
|
console.error(e);
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return false;
|
|
}
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) return;
|
|
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
for (const doc of knownDocuments) {
|
|
await client.data
|
|
.deleter()
|
|
.withClassName(camelCase(namespace))
|
|
.withId(doc.vectorId)
|
|
.do();
|
|
}
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
await DocumentVectors.deleteIds(indexes);
|
|
return true;
|
|
},
|
|
query: async function (reqBody = {}) {
|
|
const { namespace = null, input, workspace = {} } = reqBody;
|
|
if (!namespace || !input) throw new Error("Invalid request body");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
response: null,
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
const LLMConnector = getLLMProvider();
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector
|
|
);
|
|
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${chatPrompt(workspace)}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
const memory = [prompt, { role: "user", content: input }];
|
|
const responseText = await LLMConnector.getChatCompletion(memory, {
|
|
temperature: workspace?.openAiTemp ?? 0.7,
|
|
});
|
|
|
|
return {
|
|
response: responseText,
|
|
sources: this.curateSources(sourceDocuments),
|
|
message: false,
|
|
};
|
|
},
|
|
// This implementation of chat uses the chat history and modifies the system prompt at execution
|
|
// this is improved over the regular langchain implementation so that chats do not directly modify embeddings
|
|
// because then multi-user support will have all conversations mutating the base vector collection to which then
|
|
// the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs
|
|
chat: async function (reqBody = {}) {
|
|
const {
|
|
namespace = null,
|
|
input,
|
|
workspace = {},
|
|
chatHistory = [],
|
|
} = reqBody;
|
|
if (!namespace || !input) throw new Error("Invalid request body");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
response: null,
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
const LLMConnector = getLLMProvider();
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector
|
|
);
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${chatPrompt(workspace)}
|
|
Context:
|
|
${contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")}`,
|
|
};
|
|
const memory = [prompt, ...chatHistory, { role: "user", content: input }];
|
|
const responseText = await LLMConnector.getChatCompletion(memory, {
|
|
temperature: workspace?.openAiTemp ?? 0.7,
|
|
});
|
|
|
|
return {
|
|
response: responseText,
|
|
sources: this.curateSources(sourceDocuments),
|
|
message: false,
|
|
};
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { client } = await this.connect();
|
|
const stats = await this.namespace(client, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB for namespace" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { client } = await this.connect();
|
|
const details = await this.namespace(client, namespace);
|
|
await this.deleteVectorsInNamespace(client, namespace);
|
|
return {
|
|
message: `Namespace ${camelCase(namespace)} was deleted along with ${
|
|
details?.vectorCount
|
|
} vectors.`,
|
|
};
|
|
},
|
|
reset: async function () {
|
|
const { client } = await this.connect();
|
|
const weaviateClasses = await this.allNamespaces(client);
|
|
for (const weaviateClass of weaviateClasses) {
|
|
await client.schema.classDeleter().withClassName(weaviateClass).do();
|
|
}
|
|
return { reset: true };
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
if (Object.keys(source).length > 0) {
|
|
documents.push(source);
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
flattenObjectForWeaviate: function (obj = {}) {
|
|
// Note this function is not generic, it is designed specifically for Weaviate
|
|
// https://weaviate.io/developers/weaviate/config-refs/datatypes#introduction
|
|
// Credit to LangchainJS
|
|
// https://github.com/hwchase17/langchainjs/blob/5485c4af50c063e257ad54f4393fa79e0aff6462/langchain/src/vectorstores/weaviate.ts#L11C1-L50C3
|
|
const flattenedObject = {};
|
|
|
|
for (const key in obj) {
|
|
if (!Object.hasOwn(obj, key)) {
|
|
continue;
|
|
}
|
|
const value = obj[key];
|
|
if (typeof obj[key] === "object" && !Array.isArray(value)) {
|
|
const recursiveResult = this.flattenObjectForWeaviate(value);
|
|
|
|
for (const deepKey in recursiveResult) {
|
|
if (Object.hasOwn(obj, key)) {
|
|
flattenedObject[`${key}_${deepKey}`] = recursiveResult[deepKey];
|
|
}
|
|
}
|
|
} else if (Array.isArray(value)) {
|
|
if (
|
|
value.length > 0 &&
|
|
typeof value[0] !== "object" &&
|
|
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
value.every((el) => typeof el === typeof value[0])
|
|
) {
|
|
// Weaviate only supports arrays of primitive types,
|
|
// where all elements are of the same type
|
|
flattenedObject[key] = value;
|
|
}
|
|
} else {
|
|
flattenedObject[key] = value;
|
|
}
|
|
}
|
|
|
|
return flattenedObject;
|
|
},
|
|
};
|
|
|
|
module.exports.Weaviate = Weaviate;
|