mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 12:40:09 +01:00
134 lines
4.7 KiB
JavaScript
134 lines
4.7 KiB
JavaScript
const path = require("path");
|
|
const fs = require("fs");
|
|
const { toChunks } = require("../../helpers");
|
|
const { v4 } = require("uuid");
|
|
|
|
class NativeEmbedder {
|
|
constructor() {
|
|
// Model Card: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
|
this.model = "Xenova/all-MiniLM-L6-v2";
|
|
this.cacheDir = path.resolve(
|
|
process.env.STORAGE_DIR
|
|
? path.resolve(process.env.STORAGE_DIR, `models`)
|
|
: path.resolve(__dirname, `../../../storage/models`)
|
|
);
|
|
this.modelPath = path.resolve(this.cacheDir, "Xenova", "all-MiniLM-L6-v2");
|
|
|
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
|
this.maxConcurrentChunks = 25;
|
|
this.embeddingMaxChunkLength = 1_000;
|
|
|
|
// Make directory when it does not exist in existing installations
|
|
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
|
|
}
|
|
|
|
#tempfilePath() {
|
|
const filename = `${v4()}.tmp`;
|
|
const tmpPath = process.env.STORAGE_DIR
|
|
? path.resolve(process.env.STORAGE_DIR, "tmp")
|
|
: path.resolve(__dirname, `../../../storage/tmp`);
|
|
if (!fs.existsSync(tmpPath)) fs.mkdirSync(tmpPath, { recursive: true });
|
|
return path.resolve(tmpPath, filename);
|
|
}
|
|
|
|
async #writeToTempfile(filePath, data) {
|
|
try {
|
|
await fs.promises.appendFile(filePath, data, { encoding: "utf8" });
|
|
} catch (e) {
|
|
console.error(`Error writing to tempfile: ${e}`);
|
|
}
|
|
}
|
|
|
|
async embedderClient() {
|
|
if (!fs.existsSync(this.modelPath)) {
|
|
console.log(
|
|
"\x1b[34m[INFO]\x1b[0m The native embedding model has never been run and will be downloaded right now. Subsequent runs will be faster. (~23MB)\n\n"
|
|
);
|
|
}
|
|
|
|
try {
|
|
// Convert ESM to CommonJS via import so we can load this library.
|
|
const pipeline = (...args) =>
|
|
import("@xenova/transformers").then(({ pipeline }) =>
|
|
pipeline(...args)
|
|
);
|
|
return await pipeline("feature-extraction", this.model, {
|
|
cache_dir: this.cacheDir,
|
|
...(!fs.existsSync(this.modelPath)
|
|
? {
|
|
// Show download progress if we need to download any files
|
|
progress_callback: (data) => {
|
|
if (!data.hasOwnProperty("progress")) return;
|
|
console.log(
|
|
`\x1b[34m[Embedding - Downloading Model Files]\x1b[0m ${
|
|
data.file
|
|
} ${~~data?.progress}%`
|
|
);
|
|
},
|
|
}
|
|
: {}),
|
|
});
|
|
} catch (error) {
|
|
console.error("Failed to load the native embedding model:", error);
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(textInput);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
// If you are thinking you want to edit this function - you probably don't.
|
|
// This process was benchmarked heavily on a t3.small (2GB RAM 1vCPU)
|
|
// and without careful memory management for the V8 garbage collector
|
|
// this function will likely result in an OOM on any resource-constrained deployment.
|
|
// To help manage very large documents we run a concurrent write-log each iteration
|
|
// to keep the embedding result out of memory. The `maxConcurrentChunk` is set to 25,
|
|
// as 50 seems to overflow no matter what. Given the above, memory use hovers around ~30%
|
|
// during a very large document (>100K words) but can spike up to 70% before gc.
|
|
// This seems repeatable for all document sizes.
|
|
// While this does take a while, it is zero set up and is 100% free and on-instance.
|
|
async embedChunks(textChunks = []) {
|
|
const tmpFilePath = this.#tempfilePath();
|
|
const chunks = toChunks(textChunks, this.maxConcurrentChunks);
|
|
const chunkLen = chunks.length;
|
|
|
|
for (let [idx, chunk] of chunks.entries()) {
|
|
if (idx === 0) await this.#writeToTempfile(tmpFilePath, "[");
|
|
let data;
|
|
let pipeline = await this.embedderClient();
|
|
let output = await pipeline(chunk, {
|
|
pooling: "mean",
|
|
normalize: true,
|
|
});
|
|
|
|
if (output.length === 0) {
|
|
pipeline = null;
|
|
output = null;
|
|
data = null;
|
|
continue;
|
|
}
|
|
|
|
data = JSON.stringify(output.tolist());
|
|
await this.#writeToTempfile(tmpFilePath, data);
|
|
console.log(`\x1b[34m[Embedded Chunk ${idx + 1} of ${chunkLen}]\x1b[0m`);
|
|
if (chunkLen - 1 !== idx) await this.#writeToTempfile(tmpFilePath, ",");
|
|
if (chunkLen - 1 === idx) await this.#writeToTempfile(tmpFilePath, "]");
|
|
pipeline = null;
|
|
output = null;
|
|
data = null;
|
|
}
|
|
|
|
const embeddingResults = JSON.parse(
|
|
fs.readFileSync(tmpFilePath, { encoding: "utf-8" })
|
|
);
|
|
fs.rmSync(tmpFilePath, { force: true });
|
|
return embeddingResults.length > 0 ? embeddingResults.flat() : null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
NativeEmbedder,
|
|
};
|