anything-llm/server/utils/AiProviders/gemini/index.js
Timothy Carambat 99f2c25b1c
Agent Context window + context window refactor. (#2126)
* Enable agent context windows to be accurate per provider:model

* Refactor model mapping to external file
Add token count to document length instead of char-count
refernce promptWindowLimit from AIProvider in central location

* remove unused imports
2024-08-15 12:13:28 -07:00

319 lines
9.8 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
const { MODEL_MAP } = require("../modelMap");
class GeminiLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.GEMINI_API_KEY)
throw new Error("No Gemini API key was set.");
// Docs: https://ai.google.dev/tutorials/node_quickstart
const { GoogleGenerativeAI } = require("@google/generative-ai");
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);
this.model =
modelPreference || process.env.GEMINI_LLM_MODEL_PREF || "gemini-pro";
this.gemini = genAI.getGenerativeModel(
{ model: this.model },
{
// Gemini-1.5-pro-* and Gemini-1.5-flash are only available on the v1beta API.
apiVersion: [
"gemini-1.5-pro-latest",
"gemini-1.5-flash-latest",
"gemini-1.5-pro-exp-0801",
].includes(this.model)
? "v1beta"
: "v1",
}
);
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7; // not used for Gemini
this.safetyThreshold = this.#fetchSafetyThreshold();
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
// BLOCK_NONE can be a special candidate for some fields
// https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#how_to_remove_automated_response_blocking_for_select_safety_attributes
// so if you are wondering why BLOCK_NONE still failed, the link above will explain why.
#fetchSafetyThreshold() {
const threshold =
process.env.GEMINI_SAFETY_SETTING ?? "BLOCK_MEDIUM_AND_ABOVE";
const safetyThresholds = [
"BLOCK_NONE",
"BLOCK_ONLY_HIGH",
"BLOCK_MEDIUM_AND_ABOVE",
"BLOCK_LOW_AND_ABOVE",
];
return safetyThresholds.includes(threshold)
? threshold
: "BLOCK_MEDIUM_AND_ABOVE";
}
#safetySettings() {
return [
{
category: "HARM_CATEGORY_HATE_SPEECH",
threshold: this.safetyThreshold,
},
{
category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
threshold: this.safetyThreshold,
},
{ category: "HARM_CATEGORY_HARASSMENT", threshold: this.safetyThreshold },
{
category: "HARM_CATEGORY_DANGEROUS_CONTENT",
threshold: this.safetyThreshold,
},
];
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
return MODEL_MAP.gemini[modelName] ?? 30_720;
}
promptWindowLimit() {
return MODEL_MAP.gemini[this.model] ?? 30_720;
}
isValidChatCompletionModel(modelName = "") {
const validModels = [
"gemini-pro",
"gemini-1.0-pro",
"gemini-1.5-pro-latest",
"gemini-1.5-flash-latest",
"gemini-1.5-pro-exp-0801",
];
return validModels.includes(modelName);
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ text: userPrompt }];
for (let attachment of attachments) {
content.push({
inlineData: {
data: attachment.contentString.split("base64,")[1],
mimeType: attachment.mime,
},
});
}
return content.flat();
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [],
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
{ role: "assistant", content: "Okay." },
...chatHistory,
{
role: "USER_PROMPT",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
// This will take an OpenAi format message array and only pluck valid roles from it.
formatMessages(messages = []) {
// Gemini roles are either user || model.
// and all "content" is relabeled to "parts"
const allMessages = messages
.map((message) => {
if (message.role === "system")
return { role: "user", parts: [{ text: message.content }] };
if (message.role === "user")
return { role: "user", parts: [{ text: message.content }] };
if (message.role === "assistant")
return { role: "model", parts: [{ text: message.content }] };
return null;
})
.filter((msg) => !!msg);
// Specifically, Google cannot have the last sent message be from a user with no assistant reply
// otherwise it will crash. So if the last item is from the user, it was not completed so pop it off
// the history.
if (
allMessages.length > 0 &&
allMessages[allMessages.length - 1].role === "user"
)
allMessages.pop();
// Validate that after every user message, there is a model message
// sometimes when using gemini we try to compress messages in order to retain as
// much context as possible but this may mess up the order of the messages that the gemini model expects
// we do this check to work around the edge case where 2 user prompts may be next to each other, in the message array
for (let i = 0; i < allMessages.length; i++) {
if (
allMessages[i].role === "user" &&
i < allMessages.length - 1 &&
allMessages[i + 1].role !== "model"
) {
allMessages.splice(i + 1, 0, {
role: "model",
parts: [{ text: "Okay." }],
});
}
}
return allMessages;
}
async getChatCompletion(messages = [], _opts = {}) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const prompt = messages.find(
(chat) => chat.role === "USER_PROMPT"
)?.content;
const chatThread = this.gemini.startChat({
history: this.formatMessages(messages),
safetySettings: this.#safetySettings(),
});
const result = await chatThread.sendMessage(prompt);
const response = result.response;
const responseText = response.text();
if (!responseText) throw new Error("Gemini: No response could be parsed.");
return responseText;
}
async streamGetChatCompletion(messages = [], _opts = {}) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Gemini chat: ${this.model} is not valid for chat completion!`
);
const prompt = messages.find(
(chat) => chat.role === "USER_PROMPT"
)?.content;
const chatThread = this.gemini.startChat({
history: this.formatMessages(messages),
safetySettings: this.#safetySettings(),
});
const responseStream = await chatThread.sendMessageStream(prompt);
if (!responseStream.stream)
throw new Error("Could not stream response stream from Gemini.");
return responseStream.stream;
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
for await (const chunk of stream) {
let chunkText;
try {
// Due to content sensitivity we cannot always get the function .text();
// https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#gemini-TASK-samples-nodejs
// and it is not possible to unblock or disable this safety protocol without being allowlisted by Google.
chunkText = chunk.text();
} catch (e) {
chunkText = e.message;
writeResponseChunk(response, {
uuid,
sources: [],
type: "abort",
textResponse: null,
close: true,
error: e.message,
});
resolve(e.message);
return;
}
fullText += chunkText;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: chunk.text(),
close: false,
error: false,
});
}
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
}
module.exports = {
GeminiLLM,
};