mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 20:50:09 +01:00
20135835d0
* ollama: Switch from parallel to sequential chunk embedding * throw error on empty embeddings --------- Co-authored-by: John Blomberg <john.jb.blomberg@gmail.com>
90 lines
2.6 KiB
JavaScript
90 lines
2.6 KiB
JavaScript
const { maximumChunkLength } = require("../../helpers");
|
|
|
|
class OllamaEmbedder {
|
|
constructor() {
|
|
if (!process.env.EMBEDDING_BASE_PATH)
|
|
throw new Error("No embedding base path was set.");
|
|
if (!process.env.EMBEDDING_MODEL_PREF)
|
|
throw new Error("No embedding model was set.");
|
|
|
|
this.basePath = `${process.env.EMBEDDING_BASE_PATH}/api/embeddings`;
|
|
this.model = process.env.EMBEDDING_MODEL_PREF;
|
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
|
this.maxConcurrentChunks = 1;
|
|
this.embeddingMaxChunkLength = maximumChunkLength();
|
|
}
|
|
|
|
log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
async #isAlive() {
|
|
return await fetch(process.env.EMBEDDING_BASE_PATH, {
|
|
method: "HEAD",
|
|
})
|
|
.then((res) => res.ok)
|
|
.catch((e) => {
|
|
this.log(e.message);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(
|
|
Array.isArray(textInput) ? textInput : [textInput]
|
|
);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
/**
|
|
* This function takes an array of text chunks and embeds them using the Ollama API.
|
|
* chunks are processed sequentially to avoid overwhelming the API with too many requests
|
|
* or running out of resources on the endpoint running the ollama instance.
|
|
* @param {string[]} textChunks - An array of text chunks to embed.
|
|
* @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings.
|
|
*/
|
|
async embedChunks(textChunks = []) {
|
|
if (!(await this.#isAlive()))
|
|
throw new Error(
|
|
`Ollama service could not be reached. Is Ollama running?`
|
|
);
|
|
|
|
this.log(
|
|
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
|
);
|
|
|
|
let data = [];
|
|
let error = null;
|
|
|
|
for (const chunk of textChunks) {
|
|
try {
|
|
const res = await fetch(this.basePath, {
|
|
method: "POST",
|
|
body: JSON.stringify({
|
|
model: this.model,
|
|
prompt: chunk,
|
|
}),
|
|
});
|
|
|
|
const { embedding } = await res.json();
|
|
if (!Array.isArray(embedding) || embedding.length === 0)
|
|
throw new Error("Ollama returned an empty embedding for chunk!");
|
|
|
|
data.push(embedding);
|
|
} catch (err) {
|
|
this.log(err.message);
|
|
error = err.message;
|
|
data = [];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!!error) throw new Error(`Ollama Failed to embed: ${error}`);
|
|
return data.length > 0 ? data : null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
OllamaEmbedder,
|
|
};
|