anything-llm/server/utils/chats/stream.js
Timothy Carambat 37cdb845a4
patch: implement @lunamidori hotfix for LocalAI streaming chunk overflows (#433)
* patch: implement @lunamidori hotfix for LocalAI streaming chunk overflows
resolves #416

* change log to error log

* log trace

* lint
2023-12-12 16:20:06 -08:00

325 lines
8.3 KiB
JavaScript

const { v4: uuidv4 } = require("uuid");
const { WorkspaceChats } = require("../../models/workspaceChats");
const { getVectorDbClass, getLLMProvider } = require("../helpers");
const {
grepCommand,
recentChatHistory,
VALID_COMMANDS,
chatPrompt,
} = require(".");
function writeResponseChunk(response, data) {
response.write(`data: ${JSON.stringify(data)}\n\n`);
return;
}
async function streamChatWithWorkspace(
response,
workspace,
message,
chatMode = "chat",
user = null
) {
const uuid = uuidv4();
const command = grepCommand(message);
if (!!command && Object.keys(VALID_COMMANDS).includes(command)) {
const data = await VALID_COMMANDS[command](workspace, message, uuid, user);
writeResponseChunk(response, data);
return;
}
const LLMConnector = getLLMProvider();
const VectorDb = getVectorDbClass();
const { safe, reasons = [] } = await LLMConnector.isSafe(message);
if (!safe) {
writeResponseChunk(response, {
id: uuid,
type: "abort",
textResponse: null,
sources: [],
close: true,
error: `This message was moderated and will not be allowed. Violations for ${reasons.join(
", "
)} found.`,
});
return;
}
const messageLimit = workspace?.openAiHistory || 20;
const hasVectorizedSpace = await VectorDb.hasNamespace(workspace.slug);
const embeddingsCount = await VectorDb.namespaceCount(workspace.slug);
if (!hasVectorizedSpace || embeddingsCount === 0) {
// If there are no embeddings - chat like a normal LLM chat interface.
return await streamEmptyEmbeddingChat({
response,
uuid,
user,
message,
workspace,
messageLimit,
LLMConnector,
});
}
let completeText;
const { rawHistory, chatHistory } = await recentChatHistory(
user,
workspace,
messageLimit,
chatMode
);
const {
contextTexts = [],
sources = [],
message: error,
} = await VectorDb.performSimilaritySearch({
namespace: workspace.slug,
input: message,
LLMConnector,
similarityThreshold: workspace?.similarityThreshold,
});
// Failed similarity search.
if (!!error) {
writeResponseChunk(response, {
id: uuid,
type: "abort",
textResponse: null,
sources: [],
close: true,
error,
});
return;
}
// Compress message to ensure prompt passes token limit with room for response
// and build system messages based on inputs and history.
const messages = await LLMConnector.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: message,
contextTexts,
chatHistory,
},
rawHistory
);
// If streaming is not explicitly enabled for connector
// we do regular waiting of a response and send a single chunk.
if (LLMConnector.streamingEnabled() !== true) {
console.log(
`\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.`
);
completeText = await LLMConnector.getChatCompletion(messages, {
temperature: workspace?.openAiTemp ?? 0.7,
});
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: completeText,
close: true,
error: false,
});
} else {
const stream = await LLMConnector.streamGetChatCompletion(messages, {
temperature: workspace?.openAiTemp ?? 0.7,
});
completeText = await handleStreamResponses(response, stream, {
uuid,
sources,
});
}
await WorkspaceChats.new({
workspaceId: workspace.id,
prompt: message,
response: { text: completeText, sources, type: chatMode },
user,
});
return;
}
async function streamEmptyEmbeddingChat({
response,
uuid,
user,
message,
workspace,
messageLimit,
LLMConnector,
}) {
let completeText;
const { rawHistory, chatHistory } = await recentChatHistory(
user,
workspace,
messageLimit
);
// If streaming is not explicitly enabled for connector
// we do regular waiting of a response and send a single chunk.
if (LLMConnector.streamingEnabled() !== true) {
console.log(
`\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.`
);
completeText = await LLMConnector.sendChat(
chatHistory,
message,
workspace,
rawHistory
);
writeResponseChunk(response, {
uuid,
type: "textResponseChunk",
textResponse: completeText,
sources: [],
close: true,
error: false,
});
} else {
const stream = await LLMConnector.streamChat(
chatHistory,
message,
workspace,
rawHistory
);
completeText = await handleStreamResponses(response, stream, {
uuid,
sources: [],
});
}
await WorkspaceChats.new({
workspaceId: workspace.id,
prompt: message,
response: { text: completeText, sources: [], type: "chat" },
user,
});
return;
}
function handleStreamResponses(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
// If stream is not a regular OpenAI Stream (like if using native model)
// we can just iterate the stream content instead.
if (!stream.hasOwnProperty("data")) {
return new Promise(async (resolve) => {
let fullText = "";
for await (const chunk of stream) {
fullText += chunk.content;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: chunk.content,
close: false,
error: false,
});
}
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
resolve(fullText);
});
}
return new Promise((resolve) => {
let fullText = "";
let chunk = "";
stream.data.on("data", (data) => {
const lines = data
?.toString()
?.split("\n")
.filter((line) => line.trim() !== "");
for (const line of lines) {
let validJSON = false;
const message = chunk + line.replace(/^data: /, "");
// JSON chunk is incomplete and has not ended yet
// so we need to stitch it together. You would think JSON
// chunks would only come complete - but they don't!
try {
JSON.parse(message);
validJSON = true;
} catch {}
if (!validJSON) {
// It can be possible that the chunk decoding is running away
// and the message chunk fails to append due to string length.
// In this case abort the chunk and reset so we can continue.
// ref: https://github.com/Mintplex-Labs/anything-llm/issues/416
try {
chunk += message;
} catch (e) {
console.error(`Chunk appending error`, e);
chunk = "";
}
continue;
} else {
chunk = "";
}
if (message == "[DONE]") {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
resolve(fullText);
} else {
let finishReason = null;
let token = "";
try {
const json = JSON.parse(message);
token = json?.choices?.[0]?.delta?.content;
finishReason = json?.choices?.[0]?.finish_reason || null;
} catch {
continue;
}
if (token) {
fullText += token;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
if (finishReason !== null) {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
resolve(fullText);
}
}
}
});
});
}
module.exports = {
streamChatWithWorkspace,
writeResponseChunk,
};