anything-llm/server/utils/AiProviders/genericOpenAi/index.js
Timothy Carambat 99f2c25b1c
Agent Context window + context window refactor. (#2126)
* Enable agent context windows to be accurate per provider:model

* Refactor model mapping to external file
Add token count to document length instead of char-count
refernce promptWindowLimit from AIProvider in central location

* remove unused imports
2024-08-15 12:13:28 -07:00

143 lines
4.3 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
const { toValidNumber } = require("../../http");
class GenericOpenAiLLM {
constructor(embedder = null, modelPreference = null) {
const { OpenAI: OpenAIApi } = require("openai");
if (!process.env.GENERIC_OPEN_AI_BASE_PATH)
throw new Error(
"GenericOpenAI must have a valid base path to use for the api."
);
this.basePath = process.env.GENERIC_OPEN_AI_BASE_PATH;
this.openai = new OpenAIApi({
baseURL: this.basePath,
apiKey: process.env.GENERIC_OPEN_AI_API_KEY ?? null,
});
this.model =
modelPreference ?? process.env.GENERIC_OPEN_AI_MODEL_PREF ?? null;
this.maxTokens = process.env.GENERIC_OPEN_AI_MAX_TOKENS
? toValidNumber(process.env.GENERIC_OPEN_AI_MAX_TOKENS, 1024)
: 1024;
if (!this.model)
throw new Error("GenericOpenAI must have a valid model set.");
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
this.log(`Inference API: ${this.basePath} Model: ${this.model}`);
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(_modelName) {
const limit = process.env.GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No token context limit was set.");
return Number(limit);
}
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit() {
const limit = process.env.GENERIC_OPEN_AI_MODEL_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No token context limit was set.");
return Number(limit);
}
// Short circuit since we have no idea if the model is valid or not
// in pre-flight for generic endpoints
isValidChatCompletionModel(_modelName = "") {
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
max_tokens: this.maxTokens,
})
.catch((e) => {
throw new Error(e.message);
});
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
return null;
return result.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
const streamRequest = await this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
max_tokens: this.maxTokens,
});
return streamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
GenericOpenAiLLM,
};