anything-llm/server/utils/helpers/tiktoken.js
2024-01-05 09:39:19 -08:00

61 lines
1.8 KiB
JavaScript

const { getEncodingNameForModel, getEncoding } = require("js-tiktoken");
class TokenManager {
constructor(model = "gpt-3.5-turbo") {
this.model = model;
this.encoderName = this.#getEncodingFromModel(model);
this.encoder = getEncoding(this.encoderName);
}
#getEncodingFromModel(model) {
try {
return getEncodingNameForModel(model);
} catch {
return "cl100k_base";
}
}
// Pass in an empty array of disallowedSpecials to handle all tokens as text and to be tokenized.
// https://github.com/openai/tiktoken/blob/9e79899bc248d5313c7dd73562b5e211d728723d/tiktoken/core.py#L91C20-L91C38
// Returns number[]
tokensFromString(input = "") {
const tokens = this.encoder.encode(input, undefined, []);
return tokens;
}
bytesFromTokens(tokens = []) {
const bytes = this.encoder.decode(tokens);
return bytes;
}
// Returns number
countFromString(input = "") {
const tokens = this.tokensFromString(input);
return tokens.length;
}
statsFrom(input) {
if (typeof input === "string") return this.countFromString(input);
// What is going on here?
// https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb Item 6.
// The only option is to estimate. From repeated testing using the static values in the code we are always 2 off,
// which means as of Nov 1, 2023 the additional factor on ln: 476 changed from 3 to 5.
if (Array.isArray(input)) {
const perMessageFactorTokens = input.length * 3;
const tokensFromContent = input.reduce(
(a, b) => a + this.countFromString(b.content),
0
);
const diffCoefficient = 5;
return perMessageFactorTokens + tokensFromContent + diffCoefficient;
}
throw new Error("Not a supported tokenized format.");
}
}
module.exports = {
TokenManager,
};