mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-16 03:10:31 +01:00
9feaad79cc
* remove sendChat and streamChat functions/references in all LLM providers * remove unused imports --------- Co-authored-by: timothycarambat <rambat1010@gmail.com>
151 lines
4.1 KiB
JavaScript
151 lines
4.1 KiB
JavaScript
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
handleDefaultStreamResponseV2,
|
|
} = require("../../helpers/chat/responses");
|
|
|
|
class GroqLLM {
|
|
constructor(embedder = null, modelPreference = null) {
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
if (!process.env.GROQ_API_KEY) throw new Error("No Groq API key was set.");
|
|
|
|
this.openai = new OpenAIApi({
|
|
baseURL: "https://api.groq.com/openai/v1",
|
|
apiKey: process.env.GROQ_API_KEY,
|
|
});
|
|
this.model =
|
|
modelPreference || process.env.GROQ_MODEL_PREF || "llama3-8b-8192";
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = !embedder ? new NativeEmbedder() : embedder;
|
|
this.defaultTemp = 0.7;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
promptWindowLimit() {
|
|
switch (this.model) {
|
|
case "mixtral-8x7b-32768":
|
|
return 32_768;
|
|
case "llama3-8b-8192":
|
|
return 8192;
|
|
case "llama3-70b-8192":
|
|
return 8192;
|
|
case "gemma-7b-it":
|
|
return 8192;
|
|
default:
|
|
return 8192;
|
|
}
|
|
}
|
|
|
|
async isValidChatCompletionModel(modelName = "") {
|
|
const validModels = [
|
|
"mixtral-8x7b-32768",
|
|
"llama3-8b-8192",
|
|
"llama3-70b-8192",
|
|
"gemma-7b-it",
|
|
];
|
|
const isPreset = validModels.some((model) => modelName === model);
|
|
if (isPreset) return true;
|
|
|
|
const model = await this.openai.models
|
|
.retrieve(modelName)
|
|
.then((modelObj) => modelObj)
|
|
.catch(() => null);
|
|
return !!model;
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
}
|
|
|
|
async isSafe(_input = "") {
|
|
// Not implemented so must be stubbed
|
|
return { safe: true, reasons: [] };
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`GroqAI:chatCompletion: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const result = await this.openai.chat.completions
|
|
.create({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
})
|
|
.catch((e) => {
|
|
throw new Error(e.response.data.error.message);
|
|
});
|
|
|
|
if (!result.hasOwnProperty("choices") || result.choices.length === 0)
|
|
return null;
|
|
return result.choices[0].message.content;
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`GroqAI:streamChatCompletion: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const streamRequest = await this.openai.chat.completions.create({
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
});
|
|
return streamRequest;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
return handleDefaultStreamResponseV2(response, stream, responseProps);
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
GroqLLM,
|
|
};
|