mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-16 03:10:31 +01:00
bf435b2861
resolves #1230
109 lines
2.9 KiB
JavaScript
109 lines
2.9 KiB
JavaScript
const { maximumChunkLength } = require("../../helpers");
|
|
|
|
class OllamaEmbedder {
|
|
constructor() {
|
|
if (!process.env.EMBEDDING_BASE_PATH)
|
|
throw new Error("No embedding base path was set.");
|
|
if (!process.env.EMBEDDING_MODEL_PREF)
|
|
throw new Error("No embedding model was set.");
|
|
|
|
this.basePath = `${process.env.EMBEDDING_BASE_PATH}/api/embeddings`;
|
|
this.model = process.env.EMBEDDING_MODEL_PREF;
|
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
|
this.maxConcurrentChunks = 1;
|
|
this.embeddingMaxChunkLength = maximumChunkLength();
|
|
}
|
|
|
|
log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
async #isAlive() {
|
|
return await fetch(process.env.EMBEDDING_BASE_PATH, {
|
|
method: "HEAD",
|
|
})
|
|
.then((res) => res.ok)
|
|
.catch((e) => {
|
|
this.log(e.message);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(
|
|
Array.isArray(textInput) ? textInput : [textInput]
|
|
);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
if (!(await this.#isAlive()))
|
|
throw new Error(
|
|
`Ollama service could not be reached. Is Ollama running?`
|
|
);
|
|
|
|
const embeddingRequests = [];
|
|
this.log(
|
|
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
|
);
|
|
|
|
for (const chunk of textChunks) {
|
|
embeddingRequests.push(
|
|
new Promise((resolve) => {
|
|
fetch(this.basePath, {
|
|
method: "POST",
|
|
body: JSON.stringify({
|
|
model: this.model,
|
|
prompt: chunk,
|
|
}),
|
|
})
|
|
.then((res) => res.json())
|
|
.then(({ embedding }) => {
|
|
resolve({ data: embedding, error: null });
|
|
return;
|
|
})
|
|
.catch((error) => {
|
|
resolve({ data: [], error: error.message });
|
|
return;
|
|
});
|
|
})
|
|
);
|
|
}
|
|
|
|
const { data = [], error = null } = await Promise.all(
|
|
embeddingRequests
|
|
).then((results) => {
|
|
// If any errors were returned from Ollama abort the entire sequence because the embeddings
|
|
// will be incomplete.
|
|
|
|
const errors = results
|
|
.filter((res) => !!res.error)
|
|
.map((res) => res.error)
|
|
.flat();
|
|
if (errors.length > 0) {
|
|
let uniqueErrors = new Set();
|
|
errors.map((error) =>
|
|
uniqueErrors.add(`[${error.type}]: ${error.message}`)
|
|
);
|
|
|
|
return {
|
|
data: [],
|
|
error: Array.from(uniqueErrors).join(", "),
|
|
};
|
|
}
|
|
|
|
return {
|
|
data: results.map((res) => res?.data || []),
|
|
error: null,
|
|
};
|
|
});
|
|
|
|
if (!!error) throw new Error(`Ollama Failed to embed: ${error}`);
|
|
return data.length > 0 ? data : null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
OllamaEmbedder,
|
|
};
|