mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-16 03:10:31 +01:00
d02013fd71
* if document is pinned, do not give queryRefusalResponse message * forgot embed.js patch --------- Co-authored-by: timothycarambat <rambat1010@gmail.com>
223 lines
6.6 KiB
JavaScript
223 lines
6.6 KiB
JavaScript
const { v4: uuidv4 } = require("uuid");
|
|
const { getVectorDbClass, getLLMProvider } = require("../helpers");
|
|
const { chatPrompt, sourceIdentifier } = require("./index");
|
|
const { EmbedChats } = require("../../models/embedChats");
|
|
const {
|
|
convertToPromptHistory,
|
|
writeResponseChunk,
|
|
} = require("../helpers/chat/responses");
|
|
const { DocumentManager } = require("../DocumentManager");
|
|
|
|
async function streamChatWithForEmbed(
|
|
response,
|
|
/** @type {import("@prisma/client").embed_configs & {workspace?: import("@prisma/client").workspaces}} */
|
|
embed,
|
|
/** @type {String} */
|
|
message,
|
|
/** @type {String} */
|
|
sessionId,
|
|
{ promptOverride, modelOverride, temperatureOverride }
|
|
) {
|
|
const chatMode = embed.chat_mode;
|
|
const chatModel = embed.allow_model_override ? modelOverride : null;
|
|
|
|
// If there are overrides in request & they are permitted, override the default workspace ref information.
|
|
if (embed.allow_prompt_override)
|
|
embed.workspace.openAiPrompt = promptOverride;
|
|
if (embed.allow_temperature_override)
|
|
embed.workspace.openAiTemp = parseFloat(temperatureOverride);
|
|
|
|
const uuid = uuidv4();
|
|
const LLMConnector = getLLMProvider({
|
|
model: chatModel ?? embed.workspace?.chatModel,
|
|
});
|
|
const VectorDb = getVectorDbClass();
|
|
const { safe, reasons = [] } = await LLMConnector.isSafe(message);
|
|
if (!safe) {
|
|
writeResponseChunk(response, {
|
|
id: uuid,
|
|
type: "abort",
|
|
textResponse: null,
|
|
sources: [],
|
|
close: true,
|
|
error: `This message was moderated and will not be allowed. Violations for ${reasons.join(
|
|
", "
|
|
)} found.`,
|
|
});
|
|
return;
|
|
}
|
|
|
|
const messageLimit = 20;
|
|
const hasVectorizedSpace = await VectorDb.hasNamespace(embed.workspace.slug);
|
|
const embeddingsCount = await VectorDb.namespaceCount(embed.workspace.slug);
|
|
|
|
// User is trying to query-mode chat a workspace that has no data in it - so
|
|
// we should exit early as no information can be found under these conditions.
|
|
if ((!hasVectorizedSpace || embeddingsCount === 0) && chatMode === "query") {
|
|
writeResponseChunk(response, {
|
|
id: uuid,
|
|
type: "textResponse",
|
|
textResponse:
|
|
"I do not have enough information to answer that. Try another question.",
|
|
sources: [],
|
|
close: true,
|
|
error: null,
|
|
});
|
|
return;
|
|
}
|
|
|
|
let completeText;
|
|
let contextTexts = [];
|
|
let sources = [];
|
|
let pinnedDocIdentifiers = [];
|
|
const { rawHistory, chatHistory } = await recentEmbedChatHistory(
|
|
sessionId,
|
|
embed,
|
|
messageLimit,
|
|
chatMode
|
|
);
|
|
|
|
// See stream.js comment for more information on this implementation.
|
|
await new DocumentManager({
|
|
workspace: embed.workspace,
|
|
maxTokens: LLMConnector.promptWindowLimit(),
|
|
})
|
|
.pinnedDocs()
|
|
.then((pinnedDocs) => {
|
|
pinnedDocs.forEach((doc) => {
|
|
const { pageContent, ...metadata } = doc;
|
|
pinnedDocIdentifiers.push(sourceIdentifier(doc));
|
|
contextTexts.push(doc.pageContent);
|
|
sources.push({
|
|
text:
|
|
pageContent.slice(0, 1_000) +
|
|
"...continued on in source document...",
|
|
...metadata,
|
|
});
|
|
});
|
|
});
|
|
|
|
const vectorSearchResults =
|
|
embeddingsCount !== 0
|
|
? await VectorDb.performSimilaritySearch({
|
|
namespace: embed.workspace.slug,
|
|
input: message,
|
|
LLMConnector,
|
|
similarityThreshold: embed.workspace?.similarityThreshold,
|
|
topN: embed.workspace?.topN,
|
|
filterIdentifiers: pinnedDocIdentifiers,
|
|
})
|
|
: {
|
|
contextTexts: [],
|
|
sources: [],
|
|
message: null,
|
|
};
|
|
|
|
// Failed similarity search if it was run at all and failed.
|
|
if (!!vectorSearchResults.message) {
|
|
writeResponseChunk(response, {
|
|
id: uuid,
|
|
type: "abort",
|
|
textResponse: null,
|
|
sources: [],
|
|
close: true,
|
|
error: "Failed to connect to vector database provider.",
|
|
});
|
|
return;
|
|
}
|
|
|
|
contextTexts = [...contextTexts, ...vectorSearchResults.contextTexts];
|
|
sources = [...sources, ...vectorSearchResults.sources];
|
|
|
|
// If in query mode and no sources are found, do not
|
|
// let the LLM try to hallucinate a response or use general knowledge
|
|
if (
|
|
chatMode === "query" &&
|
|
sources.length === 0 &&
|
|
pinnedDocIdentifiers.length === 0
|
|
) {
|
|
writeResponseChunk(response, {
|
|
id: uuid,
|
|
type: "textResponse",
|
|
textResponse:
|
|
embed.workspace?.queryRefusalResponse ??
|
|
"There is no relevant information in this workspace to answer your query.",
|
|
sources: [],
|
|
close: true,
|
|
error: null,
|
|
});
|
|
return;
|
|
}
|
|
|
|
// Compress message to ensure prompt passes token limit with room for response
|
|
// and build system messages based on inputs and history.
|
|
const messages = await LLMConnector.compressMessages(
|
|
{
|
|
systemPrompt: chatPrompt(embed.workspace),
|
|
userPrompt: message,
|
|
contextTexts,
|
|
chatHistory,
|
|
},
|
|
rawHistory
|
|
);
|
|
|
|
// If streaming is not explicitly enabled for connector
|
|
// we do regular waiting of a response and send a single chunk.
|
|
if (LLMConnector.streamingEnabled() !== true) {
|
|
console.log(
|
|
`\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.`
|
|
);
|
|
completeText = await LLMConnector.getChatCompletion(messages, {
|
|
temperature: embed.workspace?.openAiTemp ?? LLMConnector.defaultTemp,
|
|
});
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: completeText,
|
|
close: true,
|
|
error: false,
|
|
});
|
|
} else {
|
|
const stream = await LLMConnector.streamGetChatCompletion(messages, {
|
|
temperature: embed.workspace?.openAiTemp ?? LLMConnector.defaultTemp,
|
|
});
|
|
completeText = await LLMConnector.handleStream(response, stream, {
|
|
uuid,
|
|
sources: [],
|
|
});
|
|
}
|
|
|
|
await EmbedChats.new({
|
|
embedId: embed.id,
|
|
prompt: message,
|
|
response: { text: completeText, type: chatMode },
|
|
connection_information: response.locals.connection
|
|
? { ...response.locals.connection }
|
|
: {},
|
|
sessionId,
|
|
});
|
|
return;
|
|
}
|
|
|
|
// On query we don't return message history. All other chat modes and when chatting
|
|
// with no embeddings we return history.
|
|
async function recentEmbedChatHistory(
|
|
sessionId,
|
|
embed,
|
|
messageLimit = 20,
|
|
chatMode = null
|
|
) {
|
|
if (chatMode === "query") return { rawHistory: [], chatHistory: [] };
|
|
const rawHistory = (
|
|
await EmbedChats.forEmbedByUser(embed.id, sessionId, messageLimit, {
|
|
id: "desc",
|
|
})
|
|
).reverse();
|
|
return { rawHistory, chatHistory: convertToPromptHistory(rawHistory) };
|
|
}
|
|
|
|
module.exports = {
|
|
streamChatWithForEmbed,
|
|
};
|