mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-11 09:10:13 +01:00
365 lines
12 KiB
JavaScript
365 lines
12 KiB
JavaScript
const {
|
|
DataType,
|
|
MetricType,
|
|
IndexType,
|
|
MilvusClient,
|
|
} = require("@zilliz/milvus2-sdk-node");
|
|
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
|
const { v4: uuidv4 } = require("uuid");
|
|
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
|
const {
|
|
toChunks,
|
|
getLLMProvider,
|
|
getEmbeddingEngineSelection,
|
|
} = require("../../helpers");
|
|
|
|
const Milvus = {
|
|
name: "Milvus",
|
|
connect: async function () {
|
|
if (process.env.VECTOR_DB !== "milvus")
|
|
throw new Error("Milvus::Invalid ENV settings");
|
|
|
|
const client = new MilvusClient({
|
|
address: process.env.MILVUS_ADDRESS,
|
|
username: process.env.MILVUS_USERNAME,
|
|
password: process.env.MILVUS_PASSWORD,
|
|
});
|
|
|
|
const { isHealthy } = await client.checkHealth();
|
|
if (!isHealthy)
|
|
throw new Error(
|
|
"MilvusDB::Invalid Heartbeat received - is the instance online?"
|
|
);
|
|
|
|
return { client };
|
|
},
|
|
heartbeat: async function () {
|
|
await this.connect();
|
|
return { heartbeat: Number(new Date()) };
|
|
},
|
|
totalVectors: async function () {
|
|
const { client } = await this.connect();
|
|
const { collection_names } = await client.listCollections();
|
|
const total = collection_names.reduce(async (acc, collection_name) => {
|
|
const statistics = await client.getCollectionStatistics({
|
|
collection_name,
|
|
});
|
|
return Number(acc) + Number(statistics?.data?.row_count ?? 0);
|
|
}, 0);
|
|
return total;
|
|
},
|
|
namespaceCount: async function (_namespace = null) {
|
|
const { client } = await this.connect();
|
|
const statistics = await client.getCollectionStatistics({
|
|
collection_name: _namespace,
|
|
});
|
|
return Number(statistics?.data?.row_count ?? 0);
|
|
},
|
|
namespace: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const collection = await client
|
|
.getCollectionStatistics({ collection_name: namespace })
|
|
.catch(() => null);
|
|
return collection;
|
|
},
|
|
hasNamespace: async function (namespace = null) {
|
|
if (!namespace) return false;
|
|
const { client } = await this.connect();
|
|
return await this.namespaceExists(client, namespace);
|
|
},
|
|
namespaceExists: async function (client, namespace = null) {
|
|
if (!namespace) throw new Error("No namespace value provided.");
|
|
const { value } = await client
|
|
.hasCollection({ collection_name: namespace })
|
|
.catch((e) => {
|
|
console.error("MilvusDB::namespaceExists", e.message);
|
|
return { value: false };
|
|
});
|
|
return value;
|
|
},
|
|
deleteVectorsInNamespace: async function (client, namespace = null) {
|
|
await client.dropCollection({ collection_name: namespace });
|
|
return true;
|
|
},
|
|
// Milvus requires a dimension aspect for collection creation
|
|
// we pass this in from the first chunk to infer the dimensions like other
|
|
// providers do.
|
|
getOrCreateCollection: async function (client, namespace, dimensions = null) {
|
|
const isExists = await this.namespaceExists(client, namespace);
|
|
if (!isExists) {
|
|
if (!dimensions)
|
|
throw new Error(
|
|
`Milvus:getOrCreateCollection Unable to infer vector dimension from input. Open an issue on Github for support.`
|
|
);
|
|
|
|
await client.createCollection({
|
|
collection_name: namespace,
|
|
fields: [
|
|
{
|
|
name: "id",
|
|
description: "id",
|
|
data_type: DataType.VarChar,
|
|
max_length: 255,
|
|
is_primary_key: true,
|
|
},
|
|
{
|
|
name: "vector",
|
|
description: "vector",
|
|
data_type: DataType.FloatVector,
|
|
dim: dimensions,
|
|
},
|
|
{
|
|
name: "metadata",
|
|
decription: "metadata",
|
|
data_type: DataType.JSON,
|
|
},
|
|
],
|
|
});
|
|
await client.createIndex({
|
|
collection_name: namespace,
|
|
field_name: "vector",
|
|
index_type: IndexType.AUTOINDEX,
|
|
metric_type: MetricType.COSINE,
|
|
});
|
|
await client.loadCollectionSync({
|
|
collection_name: namespace,
|
|
});
|
|
}
|
|
},
|
|
addDocumentToNamespace: async function (
|
|
namespace,
|
|
documentData = {},
|
|
fullFilePath = null
|
|
) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
try {
|
|
let vectorDimension = null;
|
|
const { pageContent, docId, ...metadata } = documentData;
|
|
if (!pageContent || pageContent.length == 0) return false;
|
|
|
|
console.log("Adding new vectorized document into namespace", namespace);
|
|
const cacheResult = await cachedVectorInformation(fullFilePath);
|
|
if (cacheResult.exists) {
|
|
const { client } = await this.connect();
|
|
const { chunks } = cacheResult;
|
|
const documentVectors = [];
|
|
vectorDimension = chunks[0][0].values.length || null;
|
|
|
|
await this.getOrCreateCollection(client, namespace, vectorDimension);
|
|
for (const chunk of chunks) {
|
|
// Before sending to Pinecone and saving the records to our db
|
|
// we need to assign the id of each chunk that is stored in the cached file.
|
|
const newChunks = chunk.map((chunk) => {
|
|
const id = uuidv4();
|
|
documentVectors.push({ docId, vectorId: id });
|
|
return { id, vector: chunk.values, metadata: chunk.metadata };
|
|
});
|
|
const insertResult = await client.insert({
|
|
collection_name: namespace,
|
|
data: newChunks,
|
|
});
|
|
|
|
if (insertResult?.status.error_code !== "Success") {
|
|
throw new Error(
|
|
`Error embedding into Milvus! Reason:${insertResult?.status.reason}`
|
|
);
|
|
}
|
|
}
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
await client.flushSync({ collection_names: [namespace] });
|
|
return true;
|
|
}
|
|
|
|
const textSplitter = new RecursiveCharacterTextSplitter({
|
|
chunkSize:
|
|
getEmbeddingEngineSelection()?.embeddingMaxChunkLength || 1_000,
|
|
chunkOverlap: 20,
|
|
});
|
|
const textChunks = await textSplitter.splitText(pageContent);
|
|
|
|
console.log("Chunks created from document:", textChunks.length);
|
|
const LLMConnector = getLLMProvider();
|
|
const documentVectors = [];
|
|
const vectors = [];
|
|
const vectorValues = await LLMConnector.embedChunks(textChunks);
|
|
|
|
if (!!vectorValues && vectorValues.length > 0) {
|
|
for (const [i, vector] of vectorValues.entries()) {
|
|
if (!vectorDimension) vectorDimension = vector.length;
|
|
const vectorRecord = {
|
|
id: uuidv4(),
|
|
values: vector,
|
|
// [DO NOT REMOVE]
|
|
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
|
metadata: { ...metadata, text: textChunks[i] },
|
|
};
|
|
|
|
vectors.push(vectorRecord);
|
|
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
|
}
|
|
} else {
|
|
throw new Error(
|
|
"Could not embed document chunks! This document will not be recorded."
|
|
);
|
|
}
|
|
|
|
if (vectors.length > 0) {
|
|
const chunks = [];
|
|
const { client } = await this.connect();
|
|
await this.getOrCreateCollection(client, namespace, vectorDimension);
|
|
|
|
console.log("Inserting vectorized chunks into Milvus.");
|
|
for (const chunk of toChunks(vectors, 100)) {
|
|
chunks.push(chunk);
|
|
const insertResult = await client.insert({
|
|
collection_name: namespace,
|
|
data: chunk.map((item) => ({
|
|
id: item.id,
|
|
vector: item.values,
|
|
metadata: chunk.metadata,
|
|
})),
|
|
});
|
|
|
|
if (insertResult?.status.error_code !== "Success") {
|
|
throw new Error(
|
|
`Error embedding into Milvus! Reason:${insertResult?.status.reason}`
|
|
);
|
|
}
|
|
}
|
|
await storeVectorResult(chunks, fullFilePath);
|
|
await client.flushSync({ collection_names: [namespace] });
|
|
}
|
|
|
|
await DocumentVectors.bulkInsert(documentVectors);
|
|
return true;
|
|
} catch (e) {
|
|
console.error(e);
|
|
console.error("addDocumentToNamespace", e.message);
|
|
return false;
|
|
}
|
|
},
|
|
deleteDocumentFromNamespace: async function (namespace, docId) {
|
|
const { DocumentVectors } = require("../../../models/vectors");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) return;
|
|
const knownDocuments = await DocumentVectors.where({ docId });
|
|
if (knownDocuments.length === 0) return;
|
|
|
|
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
|
const queryIn = vectorIds.map((v) => `'${v}'`).join(",");
|
|
await client.deleteEntities({
|
|
collection_name: namespace,
|
|
expr: `id in [${queryIn}]`,
|
|
});
|
|
|
|
const indexes = knownDocuments.map((doc) => doc.id);
|
|
await DocumentVectors.deleteIds(indexes);
|
|
|
|
// Even after flushing Milvus can take some time to re-calc the count
|
|
// so all we can hope to do is flushSync so that the count can be correct
|
|
// on a later call.
|
|
await client.flushSync({ collection_names: [namespace] });
|
|
return true;
|
|
},
|
|
performSimilaritySearch: async function ({
|
|
namespace = null,
|
|
input = "",
|
|
LLMConnector = null,
|
|
similarityThreshold = 0.25,
|
|
}) {
|
|
if (!namespace || !input || !LLMConnector)
|
|
throw new Error("Invalid request to performSimilaritySearch.");
|
|
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace))) {
|
|
return {
|
|
contextTexts: [],
|
|
sources: [],
|
|
message: "Invalid query - no documents found for workspace!",
|
|
};
|
|
}
|
|
|
|
const queryVector = await LLMConnector.embedTextInput(input);
|
|
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
|
client,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold
|
|
);
|
|
|
|
const sources = sourceDocuments.map((metadata, i) => {
|
|
return { ...metadata, text: contextTexts[i] };
|
|
});
|
|
return {
|
|
contextTexts,
|
|
sources: this.curateSources(sources),
|
|
message: false,
|
|
};
|
|
},
|
|
similarityResponse: async function (
|
|
client,
|
|
namespace,
|
|
queryVector,
|
|
similarityThreshold = 0.25
|
|
) {
|
|
const result = {
|
|
contextTexts: [],
|
|
sourceDocuments: [],
|
|
scores: [],
|
|
};
|
|
const response = await client.search({
|
|
collection_name: namespace,
|
|
vectors: queryVector,
|
|
});
|
|
response.results.forEach((match) => {
|
|
if (match.score < similarityThreshold) return;
|
|
result.contextTexts.push(match.metadata.text);
|
|
result.sourceDocuments.push(match);
|
|
result.scores.push(match.score);
|
|
});
|
|
return result;
|
|
},
|
|
"namespace-stats": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
if (!namespace) throw new Error("namespace required");
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
const stats = await this.namespace(client, namespace);
|
|
return stats
|
|
? stats
|
|
: { message: "No stats were able to be fetched from DB for namespace" };
|
|
},
|
|
"delete-namespace": async function (reqBody = {}) {
|
|
const { namespace = null } = reqBody;
|
|
const { client } = await this.connect();
|
|
if (!(await this.namespaceExists(client, namespace)))
|
|
throw new Error("Namespace by that name does not exist.");
|
|
|
|
const statistics = await this.namespace(client, namespace);
|
|
await this.deleteVectorsInNamespace(client, namespace);
|
|
const vectorCount = Number(statistics?.data?.row_count ?? 0);
|
|
return {
|
|
message: `Namespace ${namespace} was deleted along with ${vectorCount} vectors.`,
|
|
};
|
|
},
|
|
curateSources: function (sources = []) {
|
|
const documents = [];
|
|
for (const source of sources) {
|
|
const { metadata = {} } = source;
|
|
if (Object.keys(metadata).length > 0) {
|
|
documents.push({
|
|
...metadata,
|
|
...(source.hasOwnProperty("pageContent")
|
|
? { text: source.pageContent }
|
|
: {}),
|
|
});
|
|
}
|
|
}
|
|
|
|
return documents;
|
|
},
|
|
};
|
|
|
|
module.exports.Milvus = Milvus;
|