mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-05 14:30:11 +01:00
e0a0a8976d
* Add support for Ollama as LLM provider resolves #493
106 lines
3.5 KiB
JavaScript
106 lines
3.5 KiB
JavaScript
function getVectorDbClass() {
|
|
const vectorSelection = process.env.VECTOR_DB || "pinecone";
|
|
switch (vectorSelection) {
|
|
case "pinecone":
|
|
const { Pinecone } = require("../vectorDbProviders/pinecone");
|
|
return Pinecone;
|
|
case "chroma":
|
|
const { Chroma } = require("../vectorDbProviders/chroma");
|
|
return Chroma;
|
|
case "lancedb":
|
|
const { LanceDb } = require("../vectorDbProviders/lance");
|
|
return LanceDb;
|
|
case "weaviate":
|
|
const { Weaviate } = require("../vectorDbProviders/weaviate");
|
|
return Weaviate;
|
|
case "qdrant":
|
|
const { QDrant } = require("../vectorDbProviders/qdrant");
|
|
return QDrant;
|
|
default:
|
|
throw new Error("ENV: No VECTOR_DB value found in environment!");
|
|
}
|
|
}
|
|
|
|
function getLLMProvider() {
|
|
const vectorSelection = process.env.LLM_PROVIDER || "openai";
|
|
const embedder = getEmbeddingEngineSelection();
|
|
switch (vectorSelection) {
|
|
case "openai":
|
|
const { OpenAiLLM } = require("../AiProviders/openAi");
|
|
return new OpenAiLLM(embedder);
|
|
case "azure":
|
|
const { AzureOpenAiLLM } = require("../AiProviders/azureOpenAi");
|
|
return new AzureOpenAiLLM(embedder);
|
|
case "anthropic":
|
|
const { AnthropicLLM } = require("../AiProviders/anthropic");
|
|
return new AnthropicLLM(embedder);
|
|
case "gemini":
|
|
const { GeminiLLM } = require("../AiProviders/gemini");
|
|
return new GeminiLLM(embedder);
|
|
case "lmstudio":
|
|
const { LMStudioLLM } = require("../AiProviders/lmStudio");
|
|
return new LMStudioLLM(embedder);
|
|
case "localai":
|
|
const { LocalAiLLM } = require("../AiProviders/localAi");
|
|
return new LocalAiLLM(embedder);
|
|
case "ollama":
|
|
const { OllamaAILLM } = require("../AiProviders/ollama");
|
|
return new OllamaAILLM(embedder);
|
|
case "native":
|
|
const { NativeLLM } = require("../AiProviders/native");
|
|
return new NativeLLM(embedder);
|
|
default:
|
|
throw new Error("ENV: No LLM_PROVIDER value found in environment!");
|
|
}
|
|
}
|
|
|
|
function getEmbeddingEngineSelection() {
|
|
const engineSelection = process.env.EMBEDDING_ENGINE;
|
|
switch (engineSelection) {
|
|
case "openai":
|
|
const { OpenAiEmbedder } = require("../EmbeddingEngines/openAi");
|
|
return new OpenAiEmbedder();
|
|
case "azure":
|
|
const {
|
|
AzureOpenAiEmbedder,
|
|
} = require("../EmbeddingEngines/azureOpenAi");
|
|
return new AzureOpenAiEmbedder();
|
|
case "localai":
|
|
const { LocalAiEmbedder } = require("../EmbeddingEngines/localAi");
|
|
return new LocalAiEmbedder();
|
|
case "native":
|
|
const { NativeEmbedder } = require("../EmbeddingEngines/native");
|
|
return new NativeEmbedder();
|
|
default:
|
|
return null;
|
|
}
|
|
}
|
|
|
|
// Some models have lower restrictions on chars that can be encoded in a single pass
|
|
// and by default we assume it can handle 1,000 chars, but some models use work with smaller
|
|
// chars so here we can override that value when embedding information.
|
|
function maximumChunkLength() {
|
|
if (
|
|
!!process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH &&
|
|
!isNaN(process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH) &&
|
|
Number(process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH) > 1
|
|
)
|
|
return Number(process.env.EMBEDDING_MODEL_MAX_CHUNK_LENGTH);
|
|
|
|
return 1_000;
|
|
}
|
|
|
|
function toChunks(arr, size) {
|
|
return Array.from({ length: Math.ceil(arr.length / size) }, (_v, i) =>
|
|
arr.slice(i * size, i * size + size)
|
|
);
|
|
}
|
|
|
|
module.exports = {
|
|
getEmbeddingEngineSelection,
|
|
maximumChunkLength,
|
|
getVectorDbClass,
|
|
getLLMProvider,
|
|
toChunks,
|
|
};
|