anything-llm/server/utils/AiProviders/anthropic/index.js
2024-11-06 08:14:08 -08:00

251 lines
7.0 KiB
JavaScript

const { v4 } = require("uuid");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { MODEL_MAP } = require("../modelMap");
class AnthropicLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.ANTHROPIC_API_KEY)
throw new Error("No Anthropic API key was set.");
// Docs: https://www.npmjs.com/package/@anthropic-ai/sdk
const AnthropicAI = require("@anthropic-ai/sdk");
const anthropic = new AnthropicAI({
apiKey: process.env.ANTHROPIC_API_KEY,
});
this.anthropic = anthropic;
this.model =
modelPreference || process.env.ANTHROPIC_MODEL_PREF || "claude-2.0";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
return MODEL_MAP.anthropic[modelName] ?? 100_000;
}
promptWindowLimit() {
return MODEL_MAP.anthropic[this.model] ?? 100_000;
}
isValidChatCompletionModel(modelName = "") {
const validModels = [
"claude-instant-1.2",
"claude-2.0",
"claude-2.1",
"claude-3-haiku-20240307",
"claude-3-sonnet-20240229",
"claude-3-opus-latest",
"claude-3-5-haiku-latest",
"claude-3-5-haiku-20241022",
"claude-3-5-sonnet-latest",
"claude-3-5-sonnet-20241022",
"claude-3-5-sonnet-20240620",
];
return validModels.includes(modelName);
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image",
source: {
type: "base64",
media_type: attachment.mime,
data: attachment.contentString.split("base64,")[1],
},
});
}
return content.flat();
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [], // This is the specific attachment for only this prompt
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...chatHistory,
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Anthropic chat: ${this.model} is not valid for chat completion!`
);
try {
const response = await this.anthropic.messages.create({
model: this.model,
max_tokens: 4096,
system: messages[0].content, // Strip out the system message
messages: messages.slice(1), // Pop off the system message
temperature: Number(temperature ?? this.defaultTemp),
});
return response.content[0].text;
} catch (error) {
console.log(error);
return error;
}
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`Anthropic chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.anthropic.messages.stream({
model: this.model,
max_tokens: 4096,
system: messages[0].content, // Strip out the system message
messages: messages.slice(1), // Pop off the system message
temperature: Number(temperature ?? this.defaultTemp),
});
return streamRequest;
}
handleStream(response, stream, responseProps) {
return new Promise((resolve) => {
let fullText = "";
const { uuid = v4(), sources = [] } = responseProps;
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
stream.on("error", (event) => {
const parseErrorMsg = (event) => {
const error = event?.error?.error;
if (!!error)
return `Anthropic Error:${error?.type || "unknown"} ${
error?.message || "unknown error."
}`;
return event.message;
};
writeResponseChunk(response, {
uuid,
sources: [],
type: "abort",
textResponse: null,
close: true,
error: parseErrorMsg(event),
});
response.removeListener("close", handleAbort);
resolve(fullText);
});
stream.on("streamEvent", (message) => {
const data = message;
if (
data.type === "content_block_delta" &&
data.delta.type === "text_delta"
) {
const text = data.delta.text;
fullText += text;
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: text,
close: false,
error: false,
});
}
if (
message.type === "message_stop" ||
(data.stop_reason && data.stop_reason === "end_turn")
) {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
}
});
});
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageStringCompressor } = require("../../helpers/chat");
const compressedPrompt = await messageStringCompressor(
this,
promptArgs,
rawHistory
);
return compressedPrompt;
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
}
module.exports = {
AnthropicLLM,
};