anything-llm/server/utils/AiProviders/bedrock/index.js

323 lines
10 KiB
JavaScript

const { StringOutputParser } = require("@langchain/core/output_parsers");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
// Docs: https://js.langchain.com/v0.2/docs/integrations/chat/bedrock_converse
class AWSBedrockLLM {
/**
* These models do not support system prompts
* It is not explicitly stated but it is observed that they do not use the system prompt
* in their responses and will crash when a system prompt is provided.
* We can add more models to this list as we discover them or new models are added.
* We may want to extend this list or make a user-config if using custom bedrock models.
*/
noSystemPromptModels = [
"amazon.titan-text-express-v1",
"amazon.titan-text-lite-v1",
"cohere.command-text-v14",
"cohere.command-light-text-v14",
];
constructor(embedder = null, modelPreference = null) {
if (!process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID)
throw new Error("No AWS Bedrock LLM profile id was set.");
if (!process.env.AWS_BEDROCK_LLM_ACCESS_KEY)
throw new Error("No AWS Bedrock LLM access key was set.");
if (!process.env.AWS_BEDROCK_LLM_REGION)
throw new Error("No AWS Bedrock LLM region was set.");
if (
process.env.AWS_BEDROCK_LLM_CONNECTION_METHOD === "sessionToken" &&
!process.env.AWS_BEDROCK_LLM_SESSION_TOKEN
)
throw new Error(
"No AWS Bedrock LLM session token was set while using session token as the authentication method."
);
this.model =
modelPreference || process.env.AWS_BEDROCK_LLM_MODEL_PREFERENCE;
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
this.#log(
`Loaded with model: ${this.model}. Will communicate with AWS Bedrock using ${this.authMethod} authentication.`
);
}
/**
* Get the authentication method for the AWS Bedrock LLM.
* There are only two valid values for this setting - anything else will default to "iam".
* @returns {"iam"|"sessionToken"}
*/
get authMethod() {
const method = process.env.AWS_BEDROCK_LLM_CONNECTION_METHOD || "iam";
if (!["iam", "sessionToken"].includes(method)) return "iam";
return method;
}
#bedrockClient({ temperature = 0.7 }) {
const { ChatBedrockConverse } = require("@langchain/aws");
return new ChatBedrockConverse({
model: this.model,
region: process.env.AWS_BEDROCK_LLM_REGION,
credentials: {
accessKeyId: process.env.AWS_BEDROCK_LLM_ACCESS_KEY_ID,
secretAccessKey: process.env.AWS_BEDROCK_LLM_ACCESS_KEY,
...(this.authMethod === "sessionToken"
? { sessionToken: process.env.AWS_BEDROCK_LLM_SESSION_TOKEN }
: {}),
},
temperature,
});
}
// For streaming we use Langchain's wrapper to handle weird chunks
// or otherwise absorb headaches that can arise from Ollama models
#convertToLangchainPrototypes(chats = []) {
const {
HumanMessage,
SystemMessage,
AIMessage,
} = require("@langchain/core/messages");
const langchainChats = [];
const roleToMessageMap = {
system: SystemMessage,
user: HumanMessage,
assistant: AIMessage,
};
for (const chat of chats) {
if (!roleToMessageMap.hasOwnProperty(chat.role)) continue;
// When a model does not support system prompts, we need to handle it.
// We will add a new message that simulates the system prompt via a user message and AI response.
// This will allow the model to respond without crashing but we can still inject context.
if (
this.noSystemPromptModels.includes(this.model) &&
chat.role === "system"
) {
this.#log(
`Model does not support system prompts! Simulating system prompt via Human/AI message pairs.`
);
langchainChats.push(new HumanMessage({ content: chat.content }));
langchainChats.push(new AIMessage({ content: "Okay." }));
continue;
}
const MessageClass = roleToMessageMap[chat.role];
langchainChats.push(new MessageClass({ content: chat.content }));
}
return langchainChats;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
#log(text, ...args) {
console.log(`\x1b[32m[AWSBedrock]\x1b[0m ${text}`, ...args);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(_modelName) {
const limit = process.env.AWS_BEDROCK_LLM_MODEL_TOKEN_LIMIT || 8191;
if (!limit || isNaN(Number(limit)))
throw new Error("No valid token context limit was set.");
return Number(limit);
}
// Ensure the user set a value for the token limit
// and if undefined - assume 4096 window.
promptWindowLimit() {
const limit = process.env.AWS_BEDROCK_LLM_MODEL_TOKEN_LIMIT || 8191;
if (!limit || isNaN(Number(limit)))
throw new Error("No valid token context limit was set.");
return Number(limit);
}
async isValidChatCompletionModel(_ = "") {
return true;
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return { content: userPrompt };
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: attachment.contentString,
});
}
return { content: content.flat() };
}
/**
* Construct the user prompt for this model.
* @param {{attachments: import("../../helpers").Attachment[]}} param0
* @returns
*/
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [],
}) {
// AWS Mistral models do not support system prompts
if (this.model.startsWith("mistral"))
return [
...chatHistory,
{
role: "user",
...this.#generateContent({ userPrompt, attachments }),
},
];
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...chatHistory,
{
role: "user",
...this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const model = this.#bedrockClient({ temperature });
const textResponse = await model
.pipe(new StringOutputParser())
.invoke(this.#convertToLangchainPrototypes(messages))
.catch((e) => {
throw new Error(
`AWSBedrock::getChatCompletion failed to communicate with Ollama. ${e.message}`
);
});
if (!textResponse || !textResponse.length)
throw new Error(`AWSBedrock::getChatCompletion text response was empty.`);
return textResponse;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
const model = this.#bedrockClient({ temperature });
const stream = await model
.pipe(new StringOutputParser())
.stream(this.#convertToLangchainPrototypes(messages));
return stream;
}
handleStream(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => clientAbortedHandler(resolve, fullText);
response.on("close", handleAbort);
try {
for await (const chunk of stream) {
if (chunk === undefined)
throw new Error(
"Stream returned undefined chunk. Aborting reply - check model provider logs."
);
const content = chunk.hasOwnProperty("content")
? chunk.content
: chunk;
fullText += content;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: content,
close: false,
error: false,
});
}
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
resolve(fullText);
} catch (error) {
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: "",
close: true,
error: `AWSBedrock:streaming - could not stream chat. ${
error?.cause ?? error.message
}`,
});
response.removeListener("close", handleAbort);
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
AWSBedrockLLM,
};