mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-19 12:40:09 +01:00
8cc1455b72
fix: cleanup code for embedding length clarify resolves #388
88 lines
3.0 KiB
JavaScript
88 lines
3.0 KiB
JavaScript
const { toChunks } = require("../../helpers");
|
|
|
|
class AzureOpenAiEmbedder {
|
|
constructor() {
|
|
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
|
|
if (!process.env.AZURE_OPENAI_ENDPOINT)
|
|
throw new Error("No Azure API endpoint was set.");
|
|
if (!process.env.AZURE_OPENAI_KEY)
|
|
throw new Error("No Azure API key was set.");
|
|
|
|
const openai = new OpenAIClient(
|
|
process.env.AZURE_OPENAI_ENDPOINT,
|
|
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
|
|
);
|
|
this.openai = openai;
|
|
|
|
// The maximum amount of "inputs" that OpenAI API can process in a single call.
|
|
// https://learn.microsoft.com/en-us/azure/ai-services/openai/faq#i-am-trying-to-use-embeddings-and-received-the-error--invalidrequesterror--too-many-inputs--the-max-number-of-inputs-is-1---how-do-i-fix-this-:~:text=consisting%20of%20up%20to%2016%20inputs%20per%20API%20request
|
|
this.embeddingMaxChunkLength = 16;
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(textInput);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
async embedChunks(textChunks = []) {
|
|
const textEmbeddingModel =
|
|
process.env.EMBEDDING_MODEL_PREF || "text-embedding-ada-002";
|
|
if (!textEmbeddingModel)
|
|
throw new Error(
|
|
"No EMBEDDING_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an embedding model."
|
|
);
|
|
|
|
// Because there is a limit on how many chunks can be sent at once to Azure OpenAI
|
|
// we concurrently execute each max batch of text chunks possible.
|
|
// Refer to constructor embeddingMaxChunkLength for more info.
|
|
const embeddingRequests = [];
|
|
for (const chunk of toChunks(textChunks, this.embeddingMaxChunkLength)) {
|
|
embeddingRequests.push(
|
|
new Promise((resolve) => {
|
|
this.openai
|
|
.getEmbeddings(textEmbeddingModel, chunk)
|
|
.then((res) => {
|
|
resolve({ data: res.data, error: null });
|
|
})
|
|
.catch((e) => {
|
|
resolve({ data: [], error: e?.error });
|
|
});
|
|
})
|
|
);
|
|
}
|
|
|
|
const { data = [], error = null } = await Promise.all(
|
|
embeddingRequests
|
|
).then((results) => {
|
|
// If any errors were returned from Azure abort the entire sequence because the embeddings
|
|
// will be incomplete.
|
|
const errors = results
|
|
.filter((res) => !!res.error)
|
|
.map((res) => res.error)
|
|
.flat();
|
|
if (errors.length > 0) {
|
|
return {
|
|
data: [],
|
|
error: `(${errors.length}) Embedding Errors! ${errors
|
|
.map((error) => `[${error.type}]: ${error.message}`)
|
|
.join(", ")}`,
|
|
};
|
|
}
|
|
return {
|
|
data: results.map((res) => res?.data || []).flat(),
|
|
error: null,
|
|
};
|
|
});
|
|
|
|
if (!!error) throw new Error(`Azure OpenAI Failed to embed: ${error}`);
|
|
return data.length > 0 &&
|
|
data.every((embd) => embd.hasOwnProperty("embedding"))
|
|
? data.map((embd) => embd.embedding)
|
|
: null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
AzureOpenAiEmbedder,
|
|
};
|