anything-llm/docker/.env.example
pritchey 732d07829f
401-Password Complexity Check Capability (#402)
* Added improved password complexity checking capability.

* Move password complexity checker as User.util
dynamically import required libraries depending on code execution flow
lint

* Ensure persistence of password requirements on restarts via env-dump
Copy example schema to docker env as well

---------

Co-authored-by: timothycarambat <rambat1010@gmail.com>
2023-12-05 09:13:06 -08:00

95 lines
3.2 KiB
Plaintext

SERVER_PORT=3001
CACHE_VECTORS="true"
# JWT_SECRET="my-random-string-for-seeding" # Only needed if AUTH_TOKEN is set. Please generate random string at least 12 chars long.
###########################################
######## LLM API SElECTION ################
###########################################
# LLM_PROVIDER='openai'
# OPEN_AI_KEY=
# OPEN_MODEL_PREF='gpt-3.5-turbo'
# LLM_PROVIDER='azure'
# AZURE_OPENAI_ENDPOINT=
# AZURE_OPENAI_KEY=
# OPEN_MODEL_PREF='my-gpt35-deployment' # This is the "deployment" on Azure you want to use. Not the base model.
# EMBEDDING_MODEL_PREF='embedder-model' # This is the "deployment" on Azure you want to use for embeddings. Not the base model. Valid base model is text-embedding-ada-002
# LLM_PROVIDER='anthropic'
# ANTHROPIC_API_KEY=sk-ant-xxxx
# ANTHROPIC_MODEL_PREF='claude-2'
# LLM_PROVIDER='lmstudio'
# LMSTUDIO_BASE_PATH='http://your-server:1234/v1'
# LMSTUDIO_MODEL_TOKEN_LIMIT=4096
# LLM_PROVIDER='localai'
# LOCAL_AI_BASE_PATH='http://host.docker.internal:8080/v1'
# LOCAL_AI_MODEL_PREF='luna-ai-llama2'
# LOCAL_AI_MODEL_TOKEN_LIMIT=4096
# LOCAL_AI_API_KEY="sk-123abc"
###########################################
######## Embedding API SElECTION ##########
###########################################
# Only used if you are using an LLM that does not natively support embedding (openai or Azure)
# EMBEDDING_ENGINE='openai'
# OPEN_AI_KEY=sk-xxxx
# EMBEDDING_ENGINE='azure'
# AZURE_OPENAI_ENDPOINT=
# AZURE_OPENAI_KEY=
# EMBEDDING_MODEL_PREF='my-embedder-model' # This is the "deployment" on Azure you want to use for embeddings. Not the base model. Valid base model is text-embedding-ada-002
# EMBEDDING_ENGINE='localai'
# EMBEDDING_BASE_PATH='https://localhost:8080/v1'
# EMBEDDING_MODEL_PREF='text-embedding-ada-002'
###########################################
######## Vector Database Selection ########
###########################################
# Enable all below if you are using vector database: Chroma.
# VECTOR_DB="chroma"
# CHROMA_ENDPOINT='http://host.docker.internal:8000'
# CHROMA_API_HEADER="X-Api-Key"
# CHROMA_API_KEY="sk-123abc"
# Enable all below if you are using vector database: Pinecone.
# VECTOR_DB="pinecone"
# PINECONE_ENVIRONMENT=
# PINECONE_API_KEY=
# PINECONE_INDEX=
# Enable all below if you are using vector database: LanceDB.
VECTOR_DB="lancedb"
# Enable all below if you are using vector database: Weaviate.
# VECTOR_DB="weaviate"
# WEAVIATE_ENDPOINT="http://localhost:8080"
# WEAVIATE_API_KEY=
# Enable all below if you are using vector database: Qdrant.
# VECTOR_DB="qdrant"
# QDRANT_ENDPOINT="http://localhost:6333"
# QDRANT_API_KEY=
# CLOUD DEPLOYMENT VARIRABLES ONLY
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
# NO_DEBUG="true"
STORAGE_DIR="/app/server/storage"
UID='1000'
GID='1000'
###########################################
######## PASSWORD COMPLEXITY ##############
###########################################
# Enforce a password schema for your organization users.
# Documentation on how to use https://github.com/kamronbatman/joi-password-complexity
# Default is only 8 char minimum
# PASSWORDMINCHAR=8
# PASSWORDMAXCHAR=250
# PASSWORDLOWERCASE=1
# PASSWORDUPPERCASE=1
# PASSWORDNUMERIC=1
# PASSWORDSYMBOL=1
# PASSWORDREQUIREMENTS=4