mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2024-11-17 03:40:10 +01:00
c59ab9da0a
* refactor stream/chat/embed-stram to be a single execution logic path so that it is easier to maintain and build upon * no thread in sync chat since only api uses it adjust import locations
295 lines
8.7 KiB
JavaScript
295 lines
8.7 KiB
JavaScript
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const { OpenAiEmbedder } = require("../../EmbeddingEngines/openAi");
|
|
const { chatPrompt } = require("../../chats");
|
|
const { writeResponseChunk } = require("../../helpers/chat/responses");
|
|
|
|
class HuggingFaceLLM {
|
|
constructor(embedder = null, _modelPreference = null) {
|
|
const { Configuration, OpenAIApi } = require("openai");
|
|
if (!process.env.HUGGING_FACE_LLM_ENDPOINT)
|
|
throw new Error("No HuggingFace Inference Endpoint was set.");
|
|
if (!process.env.HUGGING_FACE_LLM_API_KEY)
|
|
throw new Error("No HuggingFace Access Token was set.");
|
|
|
|
const config = new Configuration({
|
|
basePath: `${process.env.HUGGING_FACE_LLM_ENDPOINT}/v1`,
|
|
apiKey: process.env.HUGGING_FACE_LLM_API_KEY,
|
|
});
|
|
this.openai = new OpenAIApi(config);
|
|
// When using HF inference server - the model param is not required so
|
|
// we can stub it here. HF Endpoints can only run one model at a time.
|
|
// We set to 'tgi' so that endpoint for HF can accept message format
|
|
this.model = "tgi";
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
if (!embedder)
|
|
console.warn(
|
|
"No embedding provider defined for HuggingFaceLLM - falling back to Native for embedding!"
|
|
);
|
|
this.embedder = !embedder ? new OpenAiEmbedder() : new NativeEmbedder();
|
|
this.defaultTemp = 0.2;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamChat" in this && "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
promptWindowLimit() {
|
|
const limit = process.env.HUGGING_FACE_LLM_TOKEN_LIMIT || 4096;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No HuggingFace token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
async isValidChatCompletionModel(_ = "") {
|
|
return true;
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
}) {
|
|
// System prompt it not enabled for HF model chats
|
|
const prompt = {
|
|
role: "user",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
const assistantResponse = {
|
|
role: "assistant",
|
|
content: "Okay, I will follow those instructions",
|
|
};
|
|
return [
|
|
prompt,
|
|
assistantResponse,
|
|
...chatHistory,
|
|
{ role: "user", content: userPrompt },
|
|
];
|
|
}
|
|
|
|
async isSafe(_input = "") {
|
|
// Not implemented so must be stubbed
|
|
return { safe: true, reasons: [] };
|
|
}
|
|
|
|
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
|
const textResponse = await this.openai
|
|
.createChatCompletion({
|
|
model: this.model,
|
|
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
|
|
n: 1,
|
|
messages: await this.compressMessages(
|
|
{
|
|
systemPrompt: chatPrompt(workspace),
|
|
userPrompt: prompt,
|
|
chatHistory,
|
|
},
|
|
rawHistory
|
|
),
|
|
})
|
|
.then((json) => {
|
|
const res = json.data;
|
|
if (!res.hasOwnProperty("choices"))
|
|
throw new Error("HuggingFace chat: No results!");
|
|
if (res.choices.length === 0)
|
|
throw new Error("HuggingFace chat: No results length!");
|
|
return res.choices[0].message.content;
|
|
})
|
|
.catch((error) => {
|
|
throw new Error(
|
|
`HuggingFace::createChatCompletion failed with: ${error.message}`
|
|
);
|
|
});
|
|
|
|
return textResponse;
|
|
}
|
|
|
|
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
|
const streamRequest = await this.openai.createChatCompletion(
|
|
{
|
|
model: this.model,
|
|
stream: true,
|
|
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
|
|
n: 1,
|
|
messages: await this.compressMessages(
|
|
{
|
|
systemPrompt: chatPrompt(workspace),
|
|
userPrompt: prompt,
|
|
chatHistory,
|
|
},
|
|
rawHistory
|
|
),
|
|
},
|
|
{ responseType: "stream" }
|
|
);
|
|
return streamRequest;
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
const { data } = await this.openai.createChatCompletion({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
});
|
|
|
|
if (!data.hasOwnProperty("choices")) return null;
|
|
return data.choices[0].message.content;
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
const streamRequest = await this.openai.createChatCompletion(
|
|
{
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
},
|
|
{ responseType: "stream" }
|
|
);
|
|
return streamRequest;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
|
|
|
return new Promise((resolve) => {
|
|
let fullText = "";
|
|
let chunk = "";
|
|
stream.data.on("data", (data) => {
|
|
const lines = data
|
|
?.toString()
|
|
?.split("\n")
|
|
.filter((line) => line.trim() !== "");
|
|
|
|
for (const line of lines) {
|
|
let validJSON = false;
|
|
const message = chunk + line.replace(/^data:/, "");
|
|
if (message !== "[DONE]") {
|
|
// JSON chunk is incomplete and has not ended yet
|
|
// so we need to stitch it together. You would think JSON
|
|
// chunks would only come complete - but they don't!
|
|
try {
|
|
JSON.parse(message);
|
|
validJSON = true;
|
|
} catch {
|
|
console.log("Failed to parse message", message);
|
|
}
|
|
|
|
if (!validJSON) {
|
|
// It can be possible that the chunk decoding is running away
|
|
// and the message chunk fails to append due to string length.
|
|
// In this case abort the chunk and reset so we can continue.
|
|
// ref: https://github.com/Mintplex-Labs/anything-llm/issues/416
|
|
try {
|
|
chunk += message;
|
|
} catch (e) {
|
|
console.error(`Chunk appending error`, e);
|
|
chunk = "";
|
|
}
|
|
continue;
|
|
} else {
|
|
chunk = "";
|
|
}
|
|
}
|
|
|
|
if (message == "[DONE]") {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources,
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: false,
|
|
});
|
|
resolve(fullText);
|
|
} else {
|
|
let error = null;
|
|
let finishReason = null;
|
|
let token = "";
|
|
try {
|
|
const json = JSON.parse(message);
|
|
error = json?.error || null;
|
|
token = json?.choices?.[0]?.delta?.content;
|
|
finishReason = json?.choices?.[0]?.finish_reason || null;
|
|
} catch {
|
|
continue;
|
|
}
|
|
|
|
if (!!error) {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: null,
|
|
close: true,
|
|
error,
|
|
});
|
|
resolve("");
|
|
return;
|
|
}
|
|
|
|
if (token) {
|
|
fullText += token;
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: token,
|
|
close: false,
|
|
error: false,
|
|
});
|
|
}
|
|
|
|
if (finishReason !== null) {
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources,
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: false,
|
|
});
|
|
resolve(fullText);
|
|
}
|
|
}
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
HuggingFaceLLM,
|
|
};
|