import is a strict keyword in Python, so it is not possible to import a
module called 'import', even with things like:
* import fdroidserver.import
* from fdroidserver import import
These days, the location that overrides all the others is in the android{}
block of the build.gradle file that loads the com.android.application
plugin. So this should be the preferred place to read these values.
test files GPL licensed: https://github.com/Integreight/1Sheeld-Android-App
This was done with much help from @uniqx. This is the first level of
supporting APK Signatures v1, v2, and v3. This is enough to include
APKs with any combo of v1/v2/v3 signatures. For this to work at all,
apksigner and androguard 3.3.3+ must be installed.
closes#399
androguard parses the whole APK before handing the instance back, this uses
the primitives to just find the <application android:debuggable=""> value,
then stop parsing.
#557
Normally, androguard parses the entire APK before it is possible to get any
values from it. This uses androguard primitives to only attempt to parse
the AndroidManifest.xml, then to quit as soon as it gets what it needs.
This greatly speeds up the parsing (1 minute vs 60 minutes).
fdroid/fdroidserver#557
For some reason, the parser stopped working intermittently, even
though the format has been the same since aapt 23 or earlier. Then
also, some of the test cases pointed to symlinks that were no longer
generated, and one test app now has a blank versionName.
Strange that this wasn't caught in the gitlab-ci runs. !484
FAIL: test_get_api_id_aapt (__main__.CommonTest)
----------------------------------------------------------------------
Traceback (most recent call last):
File "./common.TestCase", line 578, in testA_get_api_id_aapt
self.assertEqual(versionName, vn)
AssertionError: '0.1' != "0.1' platformBuildVersionName='4.3.1-1425645"
- 0.1
+ 0.1' platformBuildVersionName='4.3.1-1425645
These were both spamming the output with lots of confusing messages, even
when --verbose was not used. Jarsigner especially has confusing messages,
since it has warnings that do not pertain to APK signatures at all, like
the ones about timestamps and missing Certificate Authority.
closes#405
This came about testing on OSX, where there are often multiple versions of
the JDK installed. This was choosing the oldest version. It should
choose the most recent version.
This is useful for parsing APK files, which can include packageName,
versionCode, and optionally 7 char signing key ID (i.e. <sig>).
This also can set the packageName and versionCoe for non APK files, so
that it is easy to assign them to metadata files, and to allow for
upgrades by setting the versionCode in the filename.
Google has their own utility for verifying APK signatures on a desktop
machine since Java's jarsigner is bad for the task. For example, it
acts as if an unsigned APK validates. And to check whether an APK is
unsigned using jarsigner is difficult.
apksigner also does the v2 signatures, so it will have to be used
eventually anyway. It is already in Debian/stretch and can be
available in jessie-backports if need be.
https://android.googlesource.com/platform/tools/apksighttps://packages.debian.org/apksigner
The ZIP format allows multiple entries with the exact same filename, and on
top of that, it does not allow deleting or updating entries. To make the
`fdroid verify` procedure failsafe, it needs to create a new temporary APK
that is made up on the contents of the "unsigned APK" and the signature
from the "signed APK". Since it would be possible to give a signed APK as
in the unsigned one's position, `fdroid verify` was not able to update the
signature since it was just adding the new signature to the end of the ZIP
file. When reading a ZIP, the first entry is used.
This makes it so that the final build product can be specified in output=
and it'll work no matter if its an APK or not. This was developed around
the case of building the OTA update.zip for the Privileged Extension. It
should work for any build process in theory but it has not yet been tested.
https://gitlab.com/fdroid/privileged-extension/issues/9
The start up sequence of processes that are based on the .fdroid.* metadata
is a bit different, so this ensures that the environment variables get
properly initialized in all cases.
This also creates a single function where the environment is set. Before
it was being set in multiple places across multiple files.
This simplifies usage, goes from
build['flag']
to
build.flag
Also makes static analyzers able to detect invalid attributes as the set
is now limited in the class definition.
As a bonus, setting of the default field values is now done in the
constructor, not separately and manually.
While at it, unify "build", "thisbuild", "info", "thisinfo", etc into
just "build".
This simplifies usage, goes from
app['Foo']
to
app.Foo
Also makes static analyzers able to detect invalid attributes as the set
is now limited in the class definition.
As a bonus, setting of the default field values is now done in the
constructor, not separately and manually.
This addresses the discussion in !64https://gitlab.com/fdroid/fdroidserver/merge_requests/64
Sometimes, buildToolsVersion is a kind of gradle macro call, and other
times it is a variable assignment. This regsub pattern now handles both of
those cases.
This is a more flexible approach than testing for the complete SDK and
build-tools up front. This will only test for the commands that are
actually being run, so that if you only have `aapt` installed, you can do
`fdroid update` without errors, but other commands will still give
appropriate errors.
This also makes the build_tools item in config.py optional, it is only
needed if you want to force a specific version of the build-tools.
Just getting into the habit of adding tests to everything that I change...
Also, it should be useful to have an unsigned APK in the test collection,
since `fdroid update` should handle it gracefully and give a warning of
some kind.