\input texinfo @c -*-texinfo-*- @c %**start of header @setfilename fdroid.info @settitle F-Droid Server Manual @c %**end of header @copying This manual is for the F-Droid repository server tools. Copyright @copyright{} 2010, 2011, 2012 Ciaran Gultnieks Copyright @copyright{} 2011 Henrik Tunedal, Michael Haas, John Sullivan @quotation Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". @end quotation @end copying @titlepage @title F-Droid Server Manual @author Ciaran Gultnieks and the F-Droid project @page @vskip 0pt plus 1filll @insertcopying @end titlepage @contents @ifnottex @node Top @top F-Droid Server @insertcopying @end ifnottex @menu * Overview:: * System Requirements:: * Setup:: * Simple Binary Repository:: * Building Applications:: * Importing Applications:: * Metadata:: * Update Processing:: * Build Server:: * GNU Free Documentation License:: * Index:: @end menu @node Overview @chapter Overview The F-Droid server tools provide various scripts and tools that are used to maintain the main F-Droid application repository. You can use these same tools to create your own additional or alternative repository for publishing, or to assist in creating, testing and submitting metadata to the main repository. @node System Requirements @chapter System Requirements @cindex installation The system requirements for using the tools will vary depending on your intended usage. At the very least, you'll need: @itemize @bullet @item GNU/Linux @item Python 2.x @item The Android SDK @end itemize If you intend to build applications from source you'll also need most, if not all, of the following: @itemize @bullet @item All available SDK platforms and tools installed in the Android SDK, but *not* the proprietary components. @item The Android NDK @item Ant @item Ant Contrib Tasks (Debian package ant-contrib) @item Maven (Debian package maven2) @item JavaCC (Debian package javacc) @item JDK (Debian package openjdk-6-jdk) @item VCS clients: svn, git, git-svn, hg, bzr @item A keystore for holding release keys. (Safe, secure and well backed up!) @end itemize If you intend to use the 'Build Server' system, for secure and clean builds (highly recommended), you will also need: @itemize @bullet @item VirtualBox (debian package virtualbox-ose) @item Ruby @item Vagrant and Vagrant-snap @item Paramiko (debian package python-paramiko) @end itemize @node Setup @chapter Setup @cindex setup, installation Because the tools and data will always change rapidly, you will almost certainly want to work from a git clone of the tools at this stage. To get started: @example git clone git://gitorious.org/f-droid/fdroidserver.git @end example You now have lots of stuff in the fdroidserver directory, but the most important is the 'fdroid' command script which you run to perform all tasks. This script is always run from a repository data directory, so the most sensible thing to do next is to put your new fdroidserver directory in your @code{PATH}. @section Data To do anything, you'll need at least one repository data directory. It's from this directory that you run the @code{fdroid} command to perform all repository management tasks. You can either create a brand new one, or grab a copy of the data used by the main F-Droid repository: @example git clone git://gitorious.org/f-droid/fdroiddata.git @end example Regardless of the intended usage of the tools, you will always need to set up some basic configuration details. This is done by creating a file called @code{config.py} in the data directory. You should do this by copying the example file (@code{config.sample.py}) from the fdroidserver project to your data directory and then editing according to the instructions within. Once configured in this way, all the functionality of the tools is accessed by running the @code{fdroid} command. Run it on its own to get a list of the available sub-commands. You can follow any command with @code{--help} to get a list of additional options available for that command. @example fdroid update --help @end example @node Simple Binary Repository @chapter Simple Binary Repository @cindex binary If you want to maintain a simple repository hosting only binary APKs obtained and compiled elsewhere, the process is quite simple: @enumerate @item Set up the server tools, as described in Setup. @item Make a directory for your repository. This is the directory from which you will do all the work with your repository. Create a config file there, called @code{config.py}, by copying the @code{config.sample.py} from the server project and editing it. @item Within that, make a directory called @code{repo} and put APK files in it. @item Run @code{fdroid update}. @item If it reports that any metadata files are missing, you can create them in the @code{metadata} directory and run it again. @item To ease creation of metadata files, run @code{fdroid update} with the @code{-c} option. It will create 'skeleton' metadata files that are missing, and you can then just edit them and fill in the details. @item Then, if you've changed things, run @code{fdroid update} again. @item Running @code{fdroid update} adds an Icons directory into the repo directory, and also creates the repository index (index.xml, and also index.jar if you've configured the system to use a signed index). @item Publish the resulting contents of the @code{repo} directory to your web server. @end enumerate Following the above process will result in a @code{repo} directory, which you simply need to push to any HTTP (or preferably HTTPS) server to make it accessible. While some information about the applications (and versions thereof) is retrieved directly from the APK files, most comes from the corresponding file in the @code{metadata} directory. The metadata file covering ALL versions of a particular application is named @code{package.id.txt} where package.id is the unique identifier for that package. See the Metadata chapter for details of what goes in the metadata file. All fields are relevant for binary APKs, EXCEPT for 'Build Version' entries, which should be omitted. @node Building Applications @chapter Building Applications Instead of (or as well as) including binary APKs from external sources in a repository, you can build them directly from the source code. Using this method, it is is possible to verify that the application builds correctly, corresponds to the source code, and contains only free software. Unforunately, in the Android world, it seems to be very common for an application supplied as a binary APK to present itself as Free Software when in fact some or all of the following are true: @enumerate @item The source code (either for a particular version, or even all versions!) is unavailable or incomplete. @item The source code is not capable of producing the actual binary supplied. @item The 'source code' contains binary files of unknown origin, or with proprietary licenses. @end enumerate For this reason, source-built applications are the preferred method for the main F-Droid repository, although occasionally for technical or historical reasons, exceptions are made to this policy. When building applications from source, it should be noted that you will be signing them (all APK files must be signed to be installable on Android) with your own key. When an application is already installed on a device, it is not possible to upgrade it in place to a new version signed with a different key without first uninstalling the original. This may present an inconvenience to users, as the process of uninstalling loses any data associated with the previous installation. The process for managing a repository for built-from-source applications is very similar to that described in the Simple Binary Repository chapter, except now you need to: @enumerate @item Include Build Version entries in the metadata files. @item Run @code{fdroid build} to build any applications that are not already built. @item Run @code{fdroid publish} to finalise packaging and sign any APKs that have been built. @end enumerate @section More about build.py When run without any parameters, @code{fdroid build} will build any and all versions of applications that you don't already have in the @code{repo} directory (or more accurately, the @code{unsigned} directory. There are various other things you can do. As with all the tools, the @code{--help} option is your friend, but a few annotated examples and discussion of the more common usage modes follows: To build a single version of a single application, you could run the following: @example ./fdroid build --package=org.fdroid.fdroid --vercode 16 @end example This attempts to build version code 16 (which is version 0.25) of the F-Droid client. Many of the tools recognise this @code{--package} parameter, allowing their activity to be limited to just a single package. If the build above was succesful, two files will have been placed in the @code{unsigned} directory: @example org.fdroid.fdroid_16.apk org.fdroid.fdroid_16_src.tar.gz @end example The first is the (unsigned) APK. You could sign this with a debug key and push it direct to your device or an emulator for testing. The second is a source tarball containing exactly the source that was used to generate the binary. If you were intending to publish these files, you could then run: @example ./fdroid publish @end example The source tarball would move to the @code{repo} directory (which is the directory you would push to your web server). A signed and zip-aligned version of the APK would also appear there, and both files would be removed from the @code{unsigned} directory. If you're building purely for the purposes of testing, and not intending to push the results to a repository, at least yet, the @code{--test} option can be used to direct output to the @code{tmp} directory instead of @code{unsigned}. A similar effect could by achieved by simply deleting the output files from @code{unsigned} after the build, but with the risk of forgetting to do so! Along similar lines (and only in conjunction with @code{--test}, you can use @code{--force} to force a build of a Disabled application for test purposes, where normally it would be completely ignored. @section Direct Installation You can also build and install directly to a connected device or emulator using the @code{--install} switch. If you do this without using @code{--package} and @code{--vercode} then all versions of all packages will be installed (with each individual version overwriting the previous!). In most cases, this will not be what you want to do, so execution will stop straight away. However, you can override this if you're sure that's what you want, by using @code{--all}. @node Importing Applications @chapter Importing Applications To help with starting work on including a new application, @code{fdroid import} will take a URL and optionally some other parameters, and attempt to construct as much information as possible by analysing the source code. Basic usage is: @example ./fdroid import --url=http://address.of.project @end example For this to work, the URL must point to a project format that the script understands. Currently this is limited to one of the following: @enumerate @item Gitorious - @code{https://gitorious.org/PROJECTNAME/REPONAME} @item Github - @code{https://github.com/USER/PROJECT} @item Google Code - @code{http://code.google.com/p/PROJECT/} Supports git, svn and hg repos. Some Google Code projects have multiple repositories, identified by a dropdown list on the @code{source/checkout} page. To access one other than the default, specify its name using the @code{--repo} switch. @item Bitbucket - @code{https://bitbucket.org/USER/PROJECT/} @item Git - @code{git://REPO} @end enumerate Depending on the project type, more or less information may be gathered. For example, the license will be retrieved from a Google Code project, but not a GitHub one. A bare repo url, such as the git:// one, is the least preferable optional of all, since you will have to enter much more information manually. If the import is successful, a metadata file will be created. You will need to edit this further to check the information, and fill in the blanks. If it fails, you'll be told why. If it got as far as retrieving the source code, you can inspect it further by looking in @code{tmp/importer} where a full checkout will exist. A frequent cause of initial failure is that the project directory is actually a subdirectory in the repository. In this case, run the importer again using the @code{--subdir} option to tell it where. It will not attempt to determine this automatically, since there may be several options. @node Metadata @chapter Metadata @cindex metadata Information used by update.py to compile the public index comes from two sources: @enumerate @item the APK files in the repo directory, and @item the metadata files in the metadata directory. @end enumerate The metadata files are simple, easy to edit text files, always named as the application's package ID with '.txt' appended. Note that although the metadata files are designed to be easily read and writable by humans, they are also processed and written by various scripts. They are capable of rewriting the entire file when necessary. Even so, the structure and comments will be preserved correctly, although the order of fields will be standardised. (In the event that the original file was in a different order, comments are considered as being attached to the field following them). In fact, you can standardise all the metadata in a single command, without changing the functional content, by running: @example fdroid rewritemetadata @end example The following sections describe the fields recognised within the file. @menu * Category:: * License:: * Name:: * Web Site:: * Source Code:: * Issue Tracker:: * Donate:: * FlattrID:: * Summary:: * Description:: * Repo Type:: * Repo:: * Build Version:: * AntiFeatures:: * Disabled:: * Requires Root:: * Update Check Mode:: * Current Version:: * Current Version Code:: @end menu @node Category @section Category A single category for the application to be placed in. There is no fixed list of categories - both the client and the web site will automatically show any categories that exist in any applications. However, if your metadata is intended for the main F-Droid repository, you should probably use one of the existing categories (look at the site/client), or discuss the proposal to add a new one. @node License @section License @cindex license The license for the application. Common values: @itemize @bullet @item @samp{GPLv2} GNU GPL version 2 @item @samp{GPLv2+} GNU GPL version 2 or later @item @samp{GPLv3} GNU GPL version 3 @item @samp{GPLv3+} GNU GPL version 3 or later @item @samp{GPL} An unspecified GPL version. Use this only as a last resort. @item @samp{AGPL} Afferro GPL version 3. @item @samp{Apache2} Apache 2 @item @samp{MIT} MIT X11 license @item @samp{BSD} BSD license - the original '4-clause' version. @item @samp{NewBSD} BSD license - the new, or modified, version. @end itemize @node Name @section Name @cindex Name The name of the application. Normally, this field should not be present since the application's correct name is retrieved from the APK file. However, in a situation where an APK contains a bad or missing application name, it can be overridden using this. @node Web Site @section Web Site @cindex Web Site The URL for the application's web site. @node Source Code @section Source Code @cindex Source Code The URL to view or obtain the application's source code. This should be something human-friendly. Machine-readable source-code is covered in the 'Repo' field. @node Issue Tracker @section Issue Tracker @cindex Issue Tracker The URL for the application's issue tracker. Optional, since not all applications have one. @node Donate @section Donate @cindex Donate The URL to donate to the project. This should be the project's donate page if it has one. It is possible to use a direct PayPal link here, if that is all that is available. However, bear in mind that the developer may not be aware of that direct link, and if they later changed to a different PayPal account, or the PayPal link format changed, things could go wrong. It is always best to use a link that the developer explicitly makes public, rather than something that is auto-generated 'button code'. @node FlattrID @section FlattrID @cindex FlattrID The project's Flattr (http://flattr.com) ID, if it has one. This should be a numeric ID, such that (for example) https://flattr.com/thing/xxxx leads directly to the page to donate to the project. @node Summary @section Summary @cindex Summary A brief summary of what the application is. @node Description @section Description @cindex Description A full description of the application. This can span multiple lines, and is terminated by a line containing a single '.'. @node Repo Type @section Repo Type @cindex Repo Type The type of repository - for automatic building from source. If this is not specified, automatic building is disabled for this application. Possible values are: @itemize @bullet @item @samp{git} @item @samp{svn} @item @samp{git-svn} @item @samp{hg} @item @samp{bzr} @item @samp{srclib} @end itemize @node Repo @section Repo @cindex Repo The repository location. Usually a git: or svn: URL, for example. The git-svn option connects to an SVN repository, and you specify the URL in exactly the same way, but git is used as a back-end. This is preferable for performance reasons, and also because a local copy of the entire history is available in case the upstream repository disappears. (It happens!) For a Subversion repo that requires authentication, you can precede the repo URL with username:password@ and those parameters will be passed as @option{--username} and @option{--password} to the SVN checkout command. (This works only for plain svn and not for git-svn - one of the very few cases where using svn is advisable). @node Build Version @section Build Version @cindex Build Version Any number of these fields can be present, each specifying a version to automatically build from source. The value is a comma-separated list. For example: @samp{Build Version:0.12,3,651696a49be2cd7db5ce6a2fa8185e31f9a20035} The above specifies to build version 0.12, which has a version code of 3. The third parameter specifies the tag, commit or revision number from which to build it in the source repository. If the commit version starts with a !, that version is not built. Instead, everything after the ! is used as a reason why it can't be built. The purpose of this feature is to allow non-buildable releases (e.g. the source is not published) to be flagged, so the scripts don't generate repeated messages about them. (And also to record the information for review later). In addition to the three, always required, parameters described above, further parameters can be added (in name=value format) to apply further configuration to the build. These are: @table @code @item subdir= Specifies to build from a subdirectory of the checked out source code. Normally this directory is changed to before building, @item bindir= Normally the build output (apk) is expected to be in the bin subdirectory below the ant build files. If the project is configured to put it elsewhere, that can be specified here, relative to the base of the checked out repo. @item oldsdkloc=yes The sdk location in the repo is in an old format, or the build.xml is expecting such. The 'new' format is sdk.dir while the VERY OLD format is sdk-location. Typically, if you get a message along the lines of: "com.android.ant.SetupTask cannot be found" when trying to build, then try enabling this option. @item target= Specifies a particular SDK target, when the source doesn't. This is likely to cause the whole build.xml to be rewritten, which is fine if it's a 'standard' android file or doesn't already exist, but not a good idea if it's heavily customised. @item rm= Specifies the relative path of file to delete before the build is done. The path is relative to the base of the build directory - i.e. the root of the directory structure checked out from the source respository - not necessarily the directory that contains AndroidManifest.xml. @item antcommand=xxx Specify an alternate ant command (target) instead of the default 'release'. @item forceversion=yes If specified, the package version in AndroidManifest.xml is replaced with the version name for the build as specified in the metadata. This is useful for cases when upstream repo failed to update it for specific tag, or to build an arbitrary revision. @item forcevercode=yes If specified, the package version code in the AndroidManifest.xml is replaced with the version code for the build. See also forceversion. @item update=xxx By default, 'android update project' is used to generate or update the build.xml file. Specifying update=no bypasses that. Specifiying update=force forces rebuilding of the build.xml file at the same time - this is frequently needed with r14 of the Android platform tools. Be aware of any customisations in build.xml when using update=force. Otherwise, value can be a semicolon-separated list of directories in which to run 'android update project' relative to the main application directory (which may include '@code{subdir}' parameter). Default value is '@code{.}', and passing non-default value may be useful for multi-component projects. Note that @code{--subprojects} switch is automatically passed to 'android update project', so using explicit list may be needed only for peculiar source layouts. @item initfun=yes Enables a selection of mad hacks to make com.funambol.android build. Probably not useful for any other application. @item buildjni=[yes|no|] Enables building of native code via the ndk-build script before doing the main ant build. The value may be a list of directories relative to the main application directory in which to run ndk-build, or 'yes' which corresponds to '.' . Using explicit list may be useful to build multi-component projects. The build and scan processes will complain (refuse to build) if this parameter is not defined, but there is a @code{jni} directory present. If the native code is being built by other means, you can specify @code{no} here to avoid that. However, if the native code is actually not required, remove the directory instead (using @code{prebuild} for example). @item submodules=yes Use if the project (git only) has submodules - causes git submodule init and update to be executed after the source is cloned. @item encoding=xxxx Adds a java.encoding property to local.properties with the given value. Generally the value will be 'utf-8'. This is picked up by the SDK's ant rules, and forces the Java compiler to interpret source files with this encoding. If you receive warnings during the compile about character encodings, you probably need this. @item prebuild=xxxx Specifies a shell command (or commands - chain with &&) to run before the build takes place. Backslash can be used as an escape character to insert literal commas, or as the last character on a line to join that line with the next. It has no special meaning in other contexts; in particular, literal backslashes should not be escaped. You can use $$name$$ to substitute the path to a referenced srclib - see the @code{srclib} directory for details of this. You can use $$SDK$$ and $$NDK$$ to substitute the paths to the android SDK and NDK directories respectively. @item init=xxxx As for 'prebuild', but runs on the source code BEFORE any other processing takes place. You can use $$SDK$$ and $$NDK$$ to substitute the paths to the android SDK and NDK directories respectively. @item novcheck=yes Don't check that the version name and code in the resulting apk are correct by looking at the build output - assume the metadata is correct. This takes away a useful level of sanity checking, and should only be used if the values can't be extracted. @item fixtrans=yes Modifies any instances of string resources that use multiple formatting arguments, but don't use positional notation. For example, "Hello %s, %d" becomes "Hello %1$s, %2$d". Newer versions of the Android platform tools enforce this sensible standard. If you get error messages relating to that, you need to enable this. @item fixapos=yes Like fixtrans, but deals with an even older issue relating to 'unescaped apostrophes' in translation strings. @item maven=yes Build with maven instead of ant @item patch=x Apply patch(es). 'x' names one (or more - comma-seperated) files within a directory below the metadata, with the same name as the metadata file but without the extension. Each of these patches is applied to the code in turn. @item extlibs=a;b;c Specifies a list of external libraries (jar files) from the @code{build/extlib} library, which will be placed in the @code{libs} directory of the project. Separate items with semicolons. @item srclibs=a@@r;b@@r1; Specifies a list of source libraries (kept up to date using version control) from a predefined set. Separate items with semicolons, and each item is of the form name@@rev where name is the predefined source library name and rev is the revision in source control to use. You can then also use $$name$$ in the prebuild command to substitute the relative path to the library directory. The available source libraries are current hard-coded in common.py. This will later be data-driven. @end table Another example, using extra parameters: @samp{Build Version:1.09.03,10903,45,subdir=Timeriffic,oldsdkloc=yes} @node AntiFeatures @section AntiFeatures @cindex AntiFeatures This is optional - if present, it contains a comma-separated list of any of the following values, describing an AntiFeature the application has: @itemize @bullet @item @samp{Ads} - the application contains advertising. @item @samp{Tracking} - the application tracks and reports your activity to somewhere without your consent. @item @samp{NonFreeNet} - the application promotes a non-Free network service. @item @samp{NonFreeAdd} - the application promotes non-Free add-ons. @item @samp{NonFreeDep} - the application depends on a non-Free application (e.g. Google Maps) - i.e. it requires it to be installed on the device, but does not include it. @end itemize @node Disabled @section Disabled @cindex Disabled If this field is present, the application does not get put into the public index. This allows metadata to be retained while an application is temporarily disabled from being published. The value should be a description of why the application is disabled. @node Requires Root @section Requires Root @cindex Requires Root Set this optional field to "Yes" if the application requires root privileges to be usable. This lets the client filter it out if the user so desires. @node Update Check Mode @section Update Check Mode @cindex Update Check Mode This determines the method using for determining when new releases are available - in other words, the updating of the Current Version and Current Version Code fields in the metadata by the @code{fdroid checkupdates} process. Valid modes are: @itemize @item @code{None} - No checking is done @item @code{RepoManifest} - The AndroidManifest.xml file in the most recent commit in the source repository is checked. The appropriateness of this method depends on the development process used by the application's developers. You should not specify this method unless you're sure it's appropriate. (Also, it currently only works for git repositories). @item @code{Market} - This is being phased out and should not be used! @end itemize @node Current Version @section Current Version @cindex Current Version The name of the version that is current. There may be newer versions of the application than this (e.g. betas), and there will almost certainly be older ones. This should be the one that is recommended for general use. This field is normally automatically updated - see Update Check Mode. @node Current Version Code @section Current Version Code @cindex Current Version Code The version code corresponding to the Current Version field. Both these fields must be correct and matching. This field is normally automatically updated - see Update Check Mode. @node Update Processing @chapter Update Processing @section Detecting There are various mechanisms in place for automatically detecting that updates are available for applications, with the @code{Update Check Mode} field in the metadata determining which method is used for a particular application. Running the @code{fdroid checkupdates} command will apply this method to each application in the repository and update the @code{Current Version} and @code{Current Version Code} fields in the metadata accordingly. As usual, the @code{-p} option can be used with this, to restrict processing to a particular application. Note that this only updates the metadata such that we know what the current published/recommended version is. It doesn't make that version available in the repository - for that, see the next section. @section Adding Adding updates (i.e. new versions of applications already included in the repository) happens in two ways. The simple case is applications where the APK files are binaries, retrieved from a developer's published build. In this case, all that's required is to place the new binary in the @code{Repo} directory, and the next run of @code{fdroid update} will pick it up. For applications built from source, it is necessary to add a new @code{Build Version} line to the metadata file. At the very least, the version name, version code and commit will be different. It is also possible that the additional build flags will change between versions. For processing multiple updates in the metadata at once, it can be useful to run @code{fdroid update --interactive}. This will check all the applications in the repository, and where updates are required you will be prompted to [E]dit the metadata, [I]gnore the update, or [Q]uit altogether. @node Build Server @chapter Build Server The Build Server system isolates the builds for each package within a clean, isolated and secure throwaway virtual machine environment. @section Rationale Building applications in this manner on a large scale, especially with the involvement of automated and/or unattended processes, could be considered a dangerous pastime from a security perspective. This is even more the case when the products of the build are also distributed widely and in a semi-automated ("you have updates available") fashion. Assume that an upstream source repository is compromised. A small selection of things that an attacker could do in such a situation: @enumerate @item Use custom ant build steps to execute virtually anything as the user doing the build. @item Access the keystore. @item Modify the built apk files or source tarballs for other applications in the repository. @item Modify the metadata (which includes build scripts, which again, also includes the ability to execute anything) for other applications in the repository. @end enumerate Through complete isolation, the repurcussions are at least limited to the application in question. Aside from security issues, there are some applications which have strange requirements such as custom versions of the NDK. It would be impractical (or at least extremely messy) to start modifying and restoring the SDK on a multi-purpose system, but within the confines of a throwaway single-use virtual machine, anything is possible. @section Setting up a build server Integrating the build server setup into the main scripts is a work in progress. Some things may not work properly yet. Talk to CiaranG if you're trying to use this and have problems. In addition to the basic setup previously described, you will also need a Vagrant-compatible Debian Squeeze base box called 'debian6-32'. You can create one of these for yourself from standard Debian installation media, as the specification for what's required to be Vagrant-compatible is very well defined. This is the sensible and secure way to do it, since you know what's in it. If you insist on taking a shortcut, ask CiaranG for his on the forum or in IRC. With this base box installed, you can then do: @example ./makebuildserver.sh @end example This will take a long time - most of it spent installing the necessary parts of the Android SDK for all the various platforms. Luckily you only need to do it occasionally. Once it's complete you'll have a new base box called 'buildserver' which is what's used for the actual builds. You can then build packages as normal, but with the addition of the @code{--server} flag to @code{fdroid build} to instruct it to do all the hard work within the virtual machine, which is reset to a completely clean state for every package built. @node GNU Free Documentation License @appendix GNU Free Documentation License @include fdl.texi @node Index @unnumbered Index @printindex cp @bye