#!/usr/bin/python import codecs import json import random import socket import struct import threading import time from datetime import datetime from zlib import adler32 from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes def gendevice(devtype, host, mac, name=None, cloud=None): devices = { sp1: [0], sp2: [0x2711, # SP2 0x2719, 0x7919, 0x271a, 0x791a, # Honeywell SP2 0x2720, # SPMini 0x753e, # SP3 0x7D00, # OEM branded SP3 0x947a, 0x9479, # SP3S 0x2728, # SPMini2 0x2733, 0x273e, # OEM branded SPMini 0x7530, 0x7546, 0x7918, # OEM branded SPMini2 0x7D0D, # TMall OEM SPMini3 0x2736 # SPMiniPlus ], rm: [0x2712, # RM2 0x2737, # RM Mini 0x273d, # RM Pro Phicomm 0x2783, # RM2 Home Plus 0x277c, # RM2 Home Plus GDT 0x272a, # RM2 Pro Plus 0x2787, # RM2 Pro Plus2 0x279d, # RM2 Pro Plus3 0x27a9, # RM2 Pro Plus_300 0x278b, # RM2 Pro Plus BL 0x2797, # RM2 Pro Plus HYC 0x27a1, # RM2 Pro Plus R1 0x27a6, # RM2 Pro PP 0x278f, # RM Mini Shate 0x27c2, # RM Mini 3 0x27d1, # new RM Mini3 0x27de # RM Mini 3 (C) ], rm4: [0x51da, # RM4b 0x5f36, # RM Mini 3 0x6026, # RM4 Pro 0x610e, # RM4 Mini 0x610f, # RM4c 0x62bc, # RM4 Mini 0x62be # RM4c ], a1: [0x2714], # A1 mp1: [0x4EB5, # MP1 0x4EF7 # Honyar oem mp1 ], hysen: [0x4EAD], # Hysen controller S1C: [0x2722], # S1 (SmartOne Alarm Kit) dooya: [0x4E4D], # Dooya DT360E (DOOYA_CURTAIN_V2) bg1: [0x51E3], # BG Electrical Smart Power Socket lb1 : [0x60c8] # RGB Smart Bulb } # Look for the class associated to devtype in devices [device_class] = [dev for dev in devices if devtype in devices[dev]] or [None] if device_class is None: return device(host, mac, devtype, name=name, cloud=cloud) return device_class(host, mac, devtype, name=name, cloud=cloud) def discover(timeout=None, local_ip_address=None, discover_ip_address='255.255.255.255'): if local_ip_address is None: local_ip_address = socket.gethostbyname(socket.gethostname()) if local_ip_address.startswith('127.'): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(('8.8.8.8', 53)) # connecting to a UDP address doesn't send packets local_ip_address = s.getsockname()[0] address = local_ip_address.split('.') cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) cs.bind((local_ip_address, 0)) port = cs.getsockname()[1] starttime = time.time() devices = [] timezone = int(time.timezone / -3600) packet = bytearray(0x30) year = datetime.now().year if timezone < 0: packet[0x08] = 0xff + timezone - 1 packet[0x09] = 0xff packet[0x0a] = 0xff packet[0x0b] = 0xff else: packet[0x08] = timezone packet[0x09] = 0 packet[0x0a] = 0 packet[0x0b] = 0 packet[0x0c] = year & 0xff packet[0x0d] = year >> 8 packet[0x0e] = datetime.now().minute packet[0x0f] = datetime.now().hour subyear = str(year)[2:] packet[0x10] = int(subyear) packet[0x11] = datetime.now().isoweekday() packet[0x12] = datetime.now().day packet[0x13] = datetime.now().month packet[0x18] = int(address[0]) packet[0x19] = int(address[1]) packet[0x1a] = int(address[2]) packet[0x1b] = int(address[3]) packet[0x1c] = port & 0xff packet[0x1d] = port >> 8 packet[0x26] = 6 checksum = adler32(packet, 0xbeaf) & 0xffff packet[0x20] = checksum & 0xff packet[0x21] = checksum >> 8 cs.sendto(packet, (discover_ip_address, 80)) if timeout is None: response = cs.recvfrom(1024) responsepacket = bytearray(response[0]) host = response[1] devtype = responsepacket[0x34] | responsepacket[0x35] << 8 mac = responsepacket[0x3a:0x40] name = responsepacket[0x40:].split(b'\x00')[0].decode('utf-8') cloud = bool(responsepacket[-1]) device = gendevice(devtype, host, mac, name=name, cloud=cloud) return device while (time.time() - starttime) < timeout: cs.settimeout(timeout - (time.time() - starttime)) try: response = cs.recvfrom(1024) except socket.timeout: return devices responsepacket = bytearray(response[0]) host = response[1] devtype = responsepacket[0x34] | responsepacket[0x35] << 8 mac = responsepacket[0x3a:0x40] name = responsepacket[0x40:].split(b'\x00')[0].decode('utf-8') cloud = bool(responsepacket[-1]) device = gendevice(devtype, host, mac, name=name, cloud=cloud) devices.append(device) return devices class device: def __init__(self, host, mac, devtype, timeout=10, name=None, cloud=None): self.host = host self.mac = mac.encode() if isinstance(mac, str) else mac self.devtype = devtype if devtype is not None else 0x272a self.name = name self.cloud = cloud self.timeout = timeout self.count = random.randrange(0xffff) self.iv = bytearray( [0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28, 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58]) self.id = bytearray([0, 0, 0, 0]) self.cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) self.cs.bind(('', 0)) self.type = "Unknown" self.lock = threading.Lock() self.aes = None key = bytearray( [0x09, 0x76, 0x28, 0x34, 0x3f, 0xe9, 0x9e, 0x23, 0x76, 0x5c, 0x15, 0x13, 0xac, 0xcf, 0x8b, 0x02]) self.update_aes(key) def update_aes(self, key): self.aes = Cipher(algorithms.AES(key), modes.CBC(self.iv), backend=default_backend()) def encrypt(self, payload): encryptor = self.aes.encryptor() return encryptor.update(payload) + encryptor.finalize() def decrypt(self, payload): decryptor = self.aes.decryptor() return decryptor.update(payload) + decryptor.finalize() def auth(self): payload = bytearray(0x50) payload[0x04] = 0x31 payload[0x05] = 0x31 payload[0x06] = 0x31 payload[0x07] = 0x31 payload[0x08] = 0x31 payload[0x09] = 0x31 payload[0x0a] = 0x31 payload[0x0b] = 0x31 payload[0x0c] = 0x31 payload[0x0d] = 0x31 payload[0x0e] = 0x31 payload[0x0f] = 0x31 payload[0x10] = 0x31 payload[0x11] = 0x31 payload[0x12] = 0x31 payload[0x1e] = 0x01 payload[0x2d] = 0x01 payload[0x30] = ord('T') payload[0x31] = ord('e') payload[0x32] = ord('s') payload[0x33] = ord('t') payload[0x34] = ord(' ') payload[0x35] = ord(' ') payload[0x36] = ord('1') response = self.send_packet(0x65, payload) if any(response[0x22:0x24]): return False payload = self.decrypt(response[0x38:]) key = payload[0x04:0x14] if len(key) % 16 != 0: return False self.id = payload[0x00:0x04] self.update_aes(key) return True def get_type(self): return self.type def send_packet(self, command, payload): self.count = (self.count + 1) & 0xffff packet = bytearray(0x38) packet[0x00] = 0x5a packet[0x01] = 0xa5 packet[0x02] = 0xaa packet[0x03] = 0x55 packet[0x04] = 0x5a packet[0x05] = 0xa5 packet[0x06] = 0xaa packet[0x07] = 0x55 packet[0x24] = self.devtype & 0xff packet[0x25] = self.devtype >> 8 packet[0x26] = command packet[0x28] = self.count & 0xff packet[0x29] = self.count >> 8 packet[0x2a] = self.mac[0] packet[0x2b] = self.mac[1] packet[0x2c] = self.mac[2] packet[0x2d] = self.mac[3] packet[0x2e] = self.mac[4] packet[0x2f] = self.mac[5] packet[0x30] = self.id[0] packet[0x31] = self.id[1] packet[0x32] = self.id[2] packet[0x33] = self.id[3] # pad the payload for AES encryption if payload: payload += bytearray((16 - len(payload)) % 16) checksum = adler32(payload, 0xbeaf) & 0xffff packet[0x34] = checksum & 0xff packet[0x35] = checksum >> 8 payload = self.encrypt(payload) for i in range(len(payload)): packet.append(payload[i]) checksum = adler32(packet, 0xbeaf) & 0xffff packet[0x20] = checksum & 0xff packet[0x21] = checksum >> 8 start_time = time.time() with self.lock: while True: try: self.cs.sendto(packet, self.host) self.cs.settimeout(1) response = self.cs.recvfrom(2048) break except socket.timeout: if (time.time() - start_time) > self.timeout: raise return bytearray(response[0]) class mp1(device): def __init__(self, *args, **kwargs): device.__init__(self, *args, **kwargs) self.type = "MP1" def set_power_mask(self, sid_mask, state): """Sets the power state of the smart power strip.""" packet = bytearray(16) packet[0x00] = 0x0d packet[0x02] = 0xa5 packet[0x03] = 0xa5 packet[0x04] = 0x5a packet[0x05] = 0x5a packet[0x06] = 0xb2 + ((sid_mask << 1) if state else sid_mask) packet[0x07] = 0xc0 packet[0x08] = 0x02 packet[0x0a] = 0x03 packet[0x0d] = sid_mask packet[0x0e] = sid_mask if state else 0 self.send_packet(0x6a, packet) def set_power(self, sid, state): """Sets the power state of the smart power strip.""" sid_mask = 0x01 << (sid - 1) return self.set_power_mask(sid_mask, state) def check_power_raw(self): """Returns the power state of the smart power strip in raw format.""" packet = bytearray(16) packet[0x00] = 0x0a packet[0x02] = 0xa5 packet[0x03] = 0xa5 packet[0x04] = 0x5a packet[0x05] = 0x5a packet[0x06] = 0xae packet[0x07] = 0xc0 packet[0x08] = 0x01 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err != 0: return None payload = self.decrypt(bytes(response[0x38:])) if isinstance(payload[0x4], int): state = payload[0x0e] else: state = ord(payload[0x0e]) return state def check_power(self): """Returns the power state of the smart power strip.""" state = self.check_power_raw() if state is None: return {'s1': None, 's2': None, 's3': None, 's4': None} data = {} data['s1'] = bool(state & 0x01) data['s2'] = bool(state & 0x02) data['s3'] = bool(state & 0x04) data['s4'] = bool(state & 0x08) return data class bg1(device): def __init__(self, *args, **kwargs): device.__init__(self, *args, **kwargs) self.type = "BG1" def get_state(self): """Get state of device. Returns: dict: Dictionary of current state eg. `{"pwr":1,"pwr1":1,"pwr2":0,"maxworktime":60,"maxworktime1":60,"maxworktime2":0,"idcbrightness":50}`""" packet = self._encode(1, b'{}') response = self.send_packet(0x6a, packet) return self._decode(response) def set_state(self, pwr=None, pwr1=None, pwr2=None, maxworktime=None, maxworktime1=None, maxworktime2=None, idcbrightness=None): data = {} if pwr is not None: data['pwr'] = int(bool(pwr)) if pwr1 is not None: data['pwr1'] = int(bool(pwr1)) if pwr2 is not None: data['pwr2'] = int(bool(pwr2)) if maxworktime is not None: data['maxworktime'] = maxworktime if maxworktime1 is not None: data['maxworktime1'] = maxworktime1 if maxworktime2 is not None: data['maxworktime2'] = maxworktime2 if idcbrightness is not None: data['idcbrightness'] = idcbrightness js = json.dumps(data).encode('utf8') packet = self._encode(2, js) response = self.send_packet(0x6a, packet) return self._decode(response) def _encode(self, flag, js): # packet format is: # 0x00-0x01 length # 0x02-0x05 header # 0x06-0x07 00 # 0x08 flag (1 for read or 2 write?) # 0x09 unknown (0xb) # 0x0a-0x0d length of json # 0x0e- json data packet = bytearray(14) length = 4 + 2 + 2 + 4 + len(js) struct.pack_into('> 8 return packet def _decode(self, response): err = response[0x22] | (response[0x23] << 8) if err != 0: return None payload = self.decrypt(bytes(response[0x38:])) js_len = struct.unpack_from('> 1).value ^ crc16_constant else: crc = c_ushort(crc >> 1).value crc16_tab.append(hex(crc)) try: is_string = isinstance(input_data, str) is_bytes = isinstance(input_data, bytes) if not is_string and not is_bytes: raise Exception("Please provide a string or a byte sequence " "as argument for calculation.") crcValue = 0xffff for c in input_data: d = ord(c) if is_string else c tmp = crcValue ^ d rotated = c_ushort(crcValue >> 8).value crcValue = rotated ^ int(crc16_tab[(tmp & 0x00ff)], 0) return crcValue except Exception as e: print("EXCEPTION(calculate): {}".format(e)) def send_request(self, input_payload): crc = self.calculate_crc16(bytes(input_payload)) # first byte is length, +2 for CRC16 request_payload = bytearray([len(input_payload) + 2, 0x00]) request_payload.extend(input_payload) # append CRC request_payload.append(crc & 0xFF) request_payload.append((crc >> 8) & 0xFF) # send to device response = self.send_packet(0x6a, request_payload) # check for error err = response[0x22] | (response[0x23] << 8) if err: raise ValueError('broadlink_response_error', err) response_payload = bytearray(self.decrypt(bytes(response[0x38:]))) # experimental check on CRC in response (first 2 bytes are len, and trailing bytes are crc) response_payload_len = response_payload[0] if response_payload_len + 2 > len(response_payload): raise ValueError('hysen_response_error', 'first byte of response is not length') crc = self.calculate_crc16(bytes(response_payload[2:response_payload_len])) if (response_payload[response_payload_len] == crc & 0xFF) and ( response_payload[response_payload_len + 1] == (crc >> 8) & 0xFF): return response_payload[2:response_payload_len] raise ValueError('hysen_response_error', 'CRC check on response failed') # Get current room temperature in degrees celsius def get_temp(self): payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08])) return payload[0x05] / 2.0 # Get current external temperature in degrees celsius def get_external_temp(self): payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08])) return payload[18] / 2.0 # Get full status (including timer schedule) def get_full_status(self): payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x16])) data = {} data['remote_lock'] = payload[3] & 1 data['power'] = payload[4] & 1 data['active'] = (payload[4] >> 4) & 1 data['temp_manual'] = (payload[4] >> 6) & 1 data['room_temp'] = (payload[5] & 255) / 2.0 data['thermostat_temp'] = (payload[6] & 255) / 2.0 data['auto_mode'] = payload[7] & 15 data['loop_mode'] = (payload[7] >> 4) & 15 data['sensor'] = payload[8] data['osv'] = payload[9] data['dif'] = payload[10] data['svh'] = payload[11] data['svl'] = payload[12] data['room_temp_adj'] = ((payload[13] << 8) + payload[14]) / 2.0 if data['room_temp_adj'] > 32767: data['room_temp_adj'] = 32767 - data['room_temp_adj'] data['fre'] = payload[15] data['poweron'] = payload[16] data['unknown'] = payload[17] data['external_temp'] = (payload[18] & 255) / 2.0 data['hour'] = payload[19] data['min'] = payload[20] data['sec'] = payload[21] data['dayofweek'] = payload[22] weekday = [] for i in range(0, 6): weekday.append( {'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0}) data['weekday'] = weekday weekend = [] for i in range(6, 8): weekend.append( {'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0}) data['weekend'] = weekend return data # Change controller mode # auto_mode = 1 for auto (scheduled/timed) mode, 0 for manual mode. # Manual mode will activate last used temperature. # In typical usage call set_temp to activate manual control and set temp. # loop_mode refers to index in [ "12345,67", "123456,7", "1234567" ] # E.g. loop_mode = 0 ("12345,67") means Saturday and Sunday follow the "weekend" schedule # loop_mode = 2 ("1234567") means every day (including Saturday and Sunday) follows the "weekday" schedule # The sensor command is currently experimental def set_mode(self, auto_mode, loop_mode, sensor=0): mode_byte = ((loop_mode + 1) << 4) + auto_mode self.send_request(bytearray([0x01, 0x06, 0x00, 0x02, mode_byte, sensor])) # Advanced settings # Sensor mode (SEN) sensor = 0 for internal sensor, 1 for external sensor, # 2 for internal control temperature, external limit temperature. Factory default: 0. # Set temperature range for external sensor (OSV) osv = 5..99. Factory default: 42C # Deadzone for floor temprature (dIF) dif = 1..9. Factory default: 2C # Upper temperature limit for internal sensor (SVH) svh = 5..99. Factory default: 35C # Lower temperature limit for internal sensor (SVL) svl = 5..99. Factory default: 5C # Actual temperature calibration (AdJ) adj = -0.5. Prescision 0.1C # Anti-freezing function (FrE) fre = 0 for anti-freezing function shut down, # 1 for anti-freezing function open. Factory default: 0 # Power on memory (POn) poweron = 0 for power on memory off, 1 for power on memory on. Factory default: 0 def set_advanced(self, loop_mode, sensor, osv, dif, svh, svl, adj, fre, poweron): input_payload = bytearray([0x01, 0x10, 0x00, 0x02, 0x00, 0x05, 0x0a, loop_mode, sensor, osv, dif, svh, svl, (int(adj * 2) >> 8 & 0xff), (int(adj * 2) & 0xff), fre, poweron]) self.send_request(input_payload) # For backwards compatibility only. Prefer calling set_mode directly. # Note this function invokes loop_mode=0 and sensor=0. def switch_to_auto(self): self.set_mode(auto_mode=1, loop_mode=0) def switch_to_manual(self): self.set_mode(auto_mode=0, loop_mode=0) # Set temperature for manual mode (also activates manual mode if currently in automatic) def set_temp(self, temp): self.send_request(bytearray([0x01, 0x06, 0x00, 0x01, 0x00, int(temp * 2)])) # Set device on(1) or off(0), does not deactivate Wifi connectivity. # Remote lock disables control by buttons on thermostat. def set_power(self, power=1, remote_lock=0): self.send_request(bytearray([0x01, 0x06, 0x00, 0x00, remote_lock, power])) # set time on device # n.b. day=1 is Monday, ..., day=7 is Sunday def set_time(self, hour, minute, second, day): self.send_request(bytearray([0x01, 0x10, 0x00, 0x08, 0x00, 0x02, 0x04, hour, minute, second, day])) # Set timer schedule # Format is the same as you get from get_full_status. # weekday is a list (ordered) of 6 dicts like: # {'start_hour':17, 'start_minute':30, 'temp': 22 } # Each one specifies the thermostat temp that will become effective at start_hour:start_minute # weekend is similar but only has 2 (e.g. switch on in morning and off in afternoon) def set_schedule(self, weekday, weekend): # Begin with some magic values ... input_payload = bytearray([0x01, 0x10, 0x00, 0x0a, 0x00, 0x0c, 0x18]) # Now simply append times/temps # weekday times for i in range(0, 6): input_payload.append(weekday[i]['start_hour']) input_payload.append(weekday[i]['start_minute']) # weekend times for i in range(0, 2): input_payload.append(weekend[i]['start_hour']) input_payload.append(weekend[i]['start_minute']) # weekday temperatures for i in range(0, 6): input_payload.append(int(weekday[i]['temp'] * 2)) # weekend temperatures for i in range(0, 2): input_payload.append(int(weekend[i]['temp'] * 2)) self.send_request(input_payload) S1C_SENSORS_TYPES = { 0x31: 'Door Sensor', # 49 as hex 0x91: 'Key Fob', # 145 as hex, as serial on fob corpse 0x21: 'Motion Sensor' # 33 as hex } class S1C(device): """ Its VERY VERY VERY DIRTY IMPLEMENTATION of S1C """ def __init__(self, *args, **kwargs): device.__init__(self, *args, **kwargs) self.type = 'S1C' def get_sensors_status(self): packet = bytearray(16) packet[0] = 0x06 # 0x06 - get sensors info, 0x07 - probably add sensors response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err != 0: return None payload = self.decrypt(bytes(response[0x38:])) if not payload: return None count = payload[0x4] sensors = payload[0x6:] sensors_a = [bytearray(sensors[i * 83:(i + 1) * 83]) for i in range(len(sensors) // 83)] sens_res = [] for sens in sensors_a: status = ord(chr(sens[0])) _name = str(bytes(sens[4:26]).decode()) _order = ord(chr(sens[1])) _type = ord(chr(sens[3])) _serial = bytes(codecs.encode(sens[26:30], "hex")).decode() type_str = S1C_SENSORS_TYPES.get(_type, 'Unknown') r = { 'status': status, 'name': _name.strip('\x00'), 'type': type_str, 'order': _order, 'serial': _serial, } if r['serial'] != '00000000': sens_res.append(r) result = { 'count': count, 'sensors': sens_res } return result class dooya(device): def __init__(self, *args, **kwargs): device.__init__(self, *args, **kwargs) self.type = "Dooya DT360E" def _send(self, magic1, magic2): packet = bytearray(16) packet[0] = 0x09 packet[2] = 0xbb packet[3] = magic1 packet[4] = magic2 packet[9] = 0xfa packet[10] = 0x44 response = self.send_packet(0x6a, packet) err = response[0x22] | (response[0x23] << 8) if err != 0: return None payload = self.decrypt(bytes(response[0x38:])) return ord(payload[4]) def open(self): return self._send(0x01, 0x00) def close(self): return self._send(0x02, 0x00) def stop(self): return self._send(0x03, 0x00) def get_percentage(self): return self._send(0x06, 0x5d) def set_percentage_and_wait(self, new_percentage): current = self.get_percentage() if current > new_percentage: self.close() while current is not None and current > new_percentage: time.sleep(0.2) current = self.get_percentage() elif current < new_percentage: self.open() while current is not None and current < new_percentage: time.sleep(0.2) current = self.get_percentage() self.stop() class lb1(device): state_dict = [] effect_map_dict = { 'lovely color' : 0, 'flashlight' : 1, 'lightning' : 2, 'color fading' : 3, 'color breathing' : 4, 'multicolor breathing' : 5, 'color jumping' : 6, 'multicolor jumping' : 7 } def __init__(self, host, mac, devtype): device.__init__(self, host, mac, devtype) self.type = "SmartBulb" def send_command(self,command, type = 'set'): packet = bytearray(16+(int(len(command)/16) + 1)*16) packet[0x02] = 0xa5 packet[0x03] = 0xa5 packet[0x04] = 0x5a packet[0x05] = 0x5a packet[0x08] = 0x02 if type == "set" else 0x01 # 0x01 => query, # 0x02 => set packet[0x09] = 0x0b packet[0x0a] = len(command) packet[0x0e:] = map(ord, command) checksum = adler32(packet, 0xbeaf) & 0xffff packet[0x00] = (0x0c + len(command)) & 0xff packet[0x06] = checksum & 0xff # Checksum 1 position packet[0x07] = checksum >> 8 # Checksum 2 position response = self.send_packet(0x6a, packet) err = response[0x36] | (response[0x37] << 8) if err != 0: return None payload = self.decrypt(bytes(response[0x38:])) responseLength = int(payload[0x0a]) | (int(payload[0x0b]) << 8) if responseLength > 0: self.state_dict = json.loads(payload[0x0e:0x0e+responseLength]) def set_json(self, jsonstr): reconvert = json.loads(jsonstr) if 'bulb_sceneidx' in reconvert.keys(): reconvert['bulb_sceneidx'] = self.effect_map_dict.get(reconvert['bulb_sceneidx'], 255) self.send_command(json.dumps(reconvert)) return json.dumps(self.state_dict) def set_state(self, state): cmd = '{"pwr":%d}' % (1 if state == "ON" or state == 1 else 0) self.send_command(cmd) def get_state(self): cmd = "{}" self.send_command(cmd) return self.state_dict # Setup a new Broadlink device via AP Mode. Review the README to see how to enter AP Mode. # Only tested with Broadlink RM3 Mini (Blackbean) def setup(ssid, password, security_mode): # Security mode options are (0 - none, 1 = WEP, 2 = WPA1, 3 = WPA2, 4 = WPA1/2) payload = bytearray(0x88) payload[0x26] = 0x14 # This seems to always be set to 14 # Add the SSID to the payload ssid_start = 68 ssid_length = 0 for letter in ssid: payload[(ssid_start + ssid_length)] = ord(letter) ssid_length += 1 # Add the WiFi password to the payload pass_start = 100 pass_length = 0 for letter in password: payload[(pass_start + pass_length)] = ord(letter) pass_length += 1 payload[0x84] = ssid_length # Character length of SSID payload[0x85] = pass_length # Character length of password payload[0x86] = security_mode # Type of encryption (00 - none, 01 = WEP, 02 = WPA1, 03 = WPA2, 04 = WPA1/2) checksum = adler32(payload, 0xbeaf) & 0xffff payload[0x20] = checksum & 0xff # Checksum 1 position payload[0x21] = checksum >> 8 # Checksum 2 position sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.sendto(payload, ('255.255.255.255', 80))