mirror of
https://github.com/mjg59/python-broadlink.git
synced 2024-11-10 18:00:12 +01:00
69afd4ce52
Add a check_temperature() function that'll work for both the RM2 and the A1 sensor platform, and a check_sensors() function that returns the full set of sensor data for the A1 as a dict.
235 lines
6.7 KiB
Python
Executable File
235 lines
6.7 KiB
Python
Executable File
#!/usr/bin/python
|
|
|
|
from datetime import datetime
|
|
from socket import *
|
|
from Crypto.Cipher import AES
|
|
import time
|
|
import random
|
|
|
|
class rm2:
|
|
def __init__(self):
|
|
self.count = random.randrange(0xffff)
|
|
self.key = bytearray([0x09, 0x76, 0x28, 0x34, 0x3f, 0xe9, 0x9e, 0x23, 0x76, 0x5c, 0x15, 0x13, 0xac, 0xcf, 0x8b, 0x02])
|
|
self.iv = bytearray([0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28, 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58])
|
|
s = socket(AF_INET, SOCK_DGRAM)
|
|
s.connect(('8.8.8.8', 0)) # connecting to a UDP address doesn't send packets
|
|
local_ip_address = s.getsockname()[0]
|
|
|
|
self.address = local_ip_address.split('.')
|
|
self.id = bytearray([0, 0, 0, 0])
|
|
|
|
def discover(self):
|
|
self.cs = socket(AF_INET, SOCK_DGRAM)
|
|
self.cs.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
|
|
self.cs.setsockopt(SOL_SOCKET, SO_BROADCAST, 1)
|
|
self.cs.bind(('',0))
|
|
self.port = self.cs.getsockname()[1]
|
|
|
|
timezone = time.timezone/-3600
|
|
packet = bytearray(0x30)
|
|
|
|
year = datetime.now().year
|
|
|
|
if timezone < 0:
|
|
packet[0x08] = 0xff + timezone - 1
|
|
packet[0x09] = 0xff
|
|
packet[0x0a] = 0xff
|
|
packet[0x0b] = 0xff
|
|
else:
|
|
packet[0x08] = timezone
|
|
packet[0x09] = 0
|
|
packet[0x0a] = 0
|
|
packet[0x0b] = 0
|
|
packet[0x0c] = year & 0xff
|
|
packet[0x0d] = year >> 8
|
|
packet[0x0e] = datetime.now().minute
|
|
packet[0x0f] = datetime.now().hour
|
|
subyear = str(year)[2:]
|
|
packet[0x10] = int(subyear)
|
|
packet[0x11] = datetime.now().isoweekday()
|
|
packet[0x12] = datetime.now().day
|
|
packet[0x13] = datetime.now().month
|
|
packet[0x18] = int(self.address[0])
|
|
packet[0x19] = int(self.address[1])
|
|
packet[0x1a] = int(self.address[2])
|
|
packet[0x1b] = int(self.address[3])
|
|
packet[0x1c] = self.port & 0xff
|
|
packet[0x1d] = self.port >> 8
|
|
packet[0x26] = 6
|
|
checksum = 0xbeaf
|
|
|
|
for i in range(len(packet)):
|
|
checksum += packet[i]
|
|
checksum = checksum & 0xffff
|
|
packet[0x20] = checksum & 0xff
|
|
packet[0x21] = checksum >> 8
|
|
|
|
self.cs.sendto(packet, ('255.255.255.255', 80))
|
|
response = self.cs.recvfrom(1024)
|
|
responsepacket = bytearray(response[0])
|
|
self.host = response[1]
|
|
self.mac = responsepacket[0x3a:0x40]
|
|
|
|
def auth(self):
|
|
payload = bytearray(0x50)
|
|
payload[0x04] = 0x31
|
|
payload[0x05] = 0x31
|
|
payload[0x06] = 0x31
|
|
payload[0x07] = 0x31
|
|
payload[0x08] = 0x31
|
|
payload[0x09] = 0x31
|
|
payload[0x0a] = 0x31
|
|
payload[0x0b] = 0x31
|
|
payload[0x0c] = 0x31
|
|
payload[0x0d] = 0x31
|
|
payload[0x0e] = 0x31
|
|
payload[0x0f] = 0x31
|
|
payload[0x10] = 0x31
|
|
payload[0x11] = 0x31
|
|
payload[0x12] = 0x31
|
|
payload[0x1e] = 0x01
|
|
payload[0x2d] = 0x01
|
|
payload[0x30] = 'T'
|
|
payload[0x31] = 'e'
|
|
payload[0x32] = 's'
|
|
payload[0x33] = 't'
|
|
payload[0x34] = ' '
|
|
payload[0x35] = ' '
|
|
payload[0x36] = '1'
|
|
|
|
response = self.send_packet(0x65, payload)
|
|
|
|
enc_payload = response[0x38:]
|
|
|
|
aes = AES.new(str(self.key), AES.MODE_CBC, str(self.iv))
|
|
payload = aes.decrypt(str(response[0x38:]))
|
|
|
|
self.id = payload[0x00:0x04]
|
|
self.key = payload[0x04:0x14]
|
|
|
|
def send_packet(self, command, payload):
|
|
packet = bytearray(0x38)
|
|
packet[0x00] = 0x5a
|
|
packet[0x01] = 0xa5
|
|
packet[0x02] = 0xaa
|
|
packet[0x03] = 0x55
|
|
packet[0x04] = 0x5a
|
|
packet[0x05] = 0xa5
|
|
packet[0x06] = 0xaa
|
|
packet[0x07] = 0x55
|
|
packet[0x24] = 0x2a
|
|
packet[0x25] = 0x27
|
|
packet[0x26] = command
|
|
packet[0x28] = self.count & 0xff
|
|
packet[0x29] = self.count >> 8
|
|
packet[0x2a] = self.mac[0]
|
|
packet[0x2b] = self.mac[1]
|
|
packet[0x2c] = self.mac[2]
|
|
packet[0x2d] = self.mac[3]
|
|
packet[0x2e] = self.mac[4]
|
|
packet[0x2f] = self.mac[5]
|
|
packet[0x30] = self.id[0]
|
|
packet[0x31] = self.id[1]
|
|
packet[0x32] = self.id[2]
|
|
packet[0x33] = self.id[3]
|
|
|
|
checksum = 0xbeaf
|
|
for i in range(len(payload)):
|
|
checksum += payload[i]
|
|
checksum = checksum & 0xffff
|
|
|
|
aes = AES.new(str(self.key), AES.MODE_CBC, str(self.iv))
|
|
payload = aes.encrypt(str(payload))
|
|
|
|
packet[0x34] = checksum & 0xff
|
|
packet[0x35] = checksum >> 8
|
|
|
|
for i in range(len(payload)):
|
|
packet.append(payload[i])
|
|
|
|
checksum = 0xbeaf
|
|
for i in range(len(packet)):
|
|
checksum += packet[i]
|
|
checksum = checksum & 0xffff
|
|
packet[0x20] = checksum & 0xff
|
|
packet[0x21] = checksum >> 8
|
|
|
|
self.cs.sendto(packet, self.host)
|
|
response = self.cs.recvfrom(1024)
|
|
return response[0]
|
|
|
|
def send_data(self, data):
|
|
packet = bytearray([0x02, 0x00, 0x00, 0x00])
|
|
packet += data
|
|
self.send_packet(0x6a, packet)
|
|
|
|
def enter_learning(self):
|
|
packet = bytearray(16)
|
|
packet[0] = 3
|
|
self.send_packet(0x6a, packet)
|
|
|
|
def check_sensors(self):
|
|
packet = bytearray(16)
|
|
packet[0] = 1
|
|
response = self.send_packet(0x6a, packet)
|
|
err = ord(response[0x22]) | (ord(response[0x23]) << 8)
|
|
if err == 0:
|
|
data = {}
|
|
aes = AES.new(str(self.key), AES.MODE_CBC, str(self.iv))
|
|
payload = aes.decrypt(str(response[0x38:]))
|
|
data['temperature'] = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
|
|
data['humidity'] = (ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0
|
|
light = ord(payload[0x8])
|
|
if light == 0:
|
|
data['light'] = 'dark'
|
|
elif light == 1:
|
|
data['light'] = 'dim'
|
|
elif light == 2:
|
|
data['light'] = 'normal'
|
|
elif light == 3:
|
|
data['light'] = 'bright'
|
|
else:
|
|
data['light'] = 'unknown'
|
|
air_quality = ord(payload[0x0a])
|
|
if air_quality == 0:
|
|
data['air_quality'] = 'excellent'
|
|
elif air_quality == 1:
|
|
data['air_quality'] = 'good'
|
|
elif air_quality == 2:
|
|
data['air_quality'] = 'normal'
|
|
elif air_quality == 3:
|
|
data['air_quality'] = 'bad'
|
|
else:
|
|
data['air_quality'] = 'unknown'
|
|
noise = ord(payload[0xc])
|
|
if noise == 0:
|
|
data['noise'] = 'quiet'
|
|
elif noise == 1:
|
|
data['noise'] = 'normal'
|
|
elif noise == 2:
|
|
data['noise'] = 'noisy'
|
|
else:
|
|
data['noise'] = 'unknown'
|
|
return data
|
|
|
|
def check_temperature(self):
|
|
packet = bytearray(16)
|
|
packet[0] = 1
|
|
response = self.send_packet(0x6a, packet)
|
|
err = ord(response[0x22]) | (ord(response[0x23]) << 8)
|
|
if err == 0:
|
|
aes = AES.new(str(self.key), AES.MODE_CBC, str(self.iv))
|
|
payload = aes.decrypt(str(response[0x38:]))
|
|
temp = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
|
|
return temp
|
|
|
|
def check_data(self):
|
|
packet = bytearray(16)
|
|
packet[0] = 4
|
|
response = self.send_packet(0x6a, packet)
|
|
err = ord(response[0x22]) | (ord(response[0x23]) << 8)
|
|
if err == 0:
|
|
aes = AES.new(str(self.key), AES.MODE_CBC, str(self.iv))
|
|
payload = aes.decrypt(str(response[0x38:]))
|
|
return payload[0x04:]
|