2023-03-29 16:05:34 +02:00
|
|
|
import os
|
|
|
|
|
|
|
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
2022-11-15 14:09:51 +01:00
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from lama_cleaner.model_manager import ModelManager
|
2022-12-11 13:27:32 +01:00
|
|
|
from lama_cleaner.schema import HDStrategy, SDSampler
|
2022-11-15 14:09:51 +01:00
|
|
|
from lama_cleaner.tests.test_model import get_config, assert_equal
|
|
|
|
|
|
|
|
current_dir = Path(__file__).parent.absolute().resolve()
|
2023-02-07 14:00:19 +01:00
|
|
|
save_dir = current_dir / "result"
|
2022-11-15 14:09:51 +01:00
|
|
|
save_dir.mkdir(exist_ok=True, parents=True)
|
2023-02-07 14:00:19 +01:00
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
2022-11-15 14:09:51 +01:00
|
|
|
device = torch.device(device)
|
|
|
|
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda"])
|
2022-11-15 14:09:51 +01:00
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
|
|
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
|
|
|
@pytest.mark.parametrize("cpu_textencoder", [True, False])
|
|
|
|
@pytest.mark.parametrize("disable_nsfw", [True, False])
|
2023-02-07 14:00:19 +01:00
|
|
|
def test_runway_sd_1_5_ddim(
|
|
|
|
sd_device, strategy, sampler, cpu_textencoder, disable_nsfw
|
|
|
|
):
|
2022-11-15 14:09:51 +01:00
|
|
|
def callback(i, t, latents):
|
2023-02-07 14:00:19 +01:00
|
|
|
pass
|
2022-11-15 14:09:51 +01:00
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
2022-11-15 14:09:51 +01:00
|
|
|
return
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
sd_steps = 50 if sd_device == "cuda" else 1
|
|
|
|
model = ModelManager(
|
|
|
|
name="sd1.5",
|
|
|
|
device=torch.device(sd_device),
|
|
|
|
hf_access_token="",
|
|
|
|
sd_run_local=True,
|
|
|
|
disable_nsfw=disable_nsfw,
|
|
|
|
sd_cpu_textencoder=cpu_textencoder,
|
|
|
|
callback=callback,
|
|
|
|
)
|
|
|
|
cfg = get_config(strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps)
|
2022-11-15 14:09:51 +01:00
|
|
|
cfg.sd_sampler = sampler
|
|
|
|
|
|
|
|
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
|
|
|
|
|
|
|
|
assert_equal(
|
|
|
|
model,
|
|
|
|
cfg,
|
|
|
|
f"runway_sd_{strategy.capitalize()}_{name}.png",
|
|
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
2023-02-07 14:00:19 +01:00
|
|
|
fx=1.3,
|
2022-11-15 14:09:51 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda"])
|
2022-11-15 14:09:51 +01:00
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
2023-02-07 14:00:19 +01:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"sampler", [SDSampler.pndm, SDSampler.k_lms, SDSampler.k_euler, SDSampler.k_euler_a]
|
|
|
|
)
|
2022-11-15 14:09:51 +01:00
|
|
|
@pytest.mark.parametrize("cpu_textencoder", [False])
|
|
|
|
@pytest.mark.parametrize("disable_nsfw", [True])
|
|
|
|
def test_runway_sd_1_5(sd_device, strategy, sampler, cpu_textencoder, disable_nsfw):
|
|
|
|
def callback(i, t, latents):
|
|
|
|
print(f"sd_step_{i}")
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
2022-11-15 14:09:51 +01:00
|
|
|
return
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
sd_steps = 50 if sd_device == "cuda" else 1
|
|
|
|
model = ModelManager(
|
|
|
|
name="sd1.5",
|
|
|
|
device=torch.device(sd_device),
|
|
|
|
hf_access_token="",
|
|
|
|
sd_run_local=True,
|
|
|
|
disable_nsfw=disable_nsfw,
|
|
|
|
sd_cpu_textencoder=cpu_textencoder,
|
|
|
|
callback=callback,
|
|
|
|
)
|
|
|
|
cfg = get_config(strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps)
|
2022-11-15 14:09:51 +01:00
|
|
|
cfg.sd_sampler = sampler
|
|
|
|
|
|
|
|
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
|
|
|
|
|
|
|
|
assert_equal(
|
|
|
|
model,
|
|
|
|
cfg,
|
|
|
|
f"runway_sd_{strategy.capitalize()}_{name}.png",
|
|
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
2023-02-07 14:00:19 +01:00
|
|
|
fx=1.3,
|
2022-11-15 14:09:51 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda"])
|
2022-11-15 14:09:51 +01:00
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
|
|
@pytest.mark.parametrize("sampler", [SDSampler.ddim])
|
|
|
|
def test_runway_sd_1_5_negative_prompt(sd_device, strategy, sampler):
|
|
|
|
def callback(i, t, latents):
|
|
|
|
pass
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
2022-11-15 14:09:51 +01:00
|
|
|
return
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
sd_steps = 50 if sd_device == "cuda" else 1
|
|
|
|
model = ModelManager(
|
|
|
|
name="sd1.5",
|
|
|
|
device=torch.device(sd_device),
|
|
|
|
hf_access_token="",
|
|
|
|
sd_run_local=True,
|
|
|
|
disable_nsfw=False,
|
|
|
|
sd_cpu_textencoder=False,
|
|
|
|
callback=callback,
|
|
|
|
)
|
2022-11-15 14:09:51 +01:00
|
|
|
cfg = get_config(
|
|
|
|
strategy,
|
|
|
|
sd_steps=sd_steps,
|
2023-02-07 14:00:19 +01:00
|
|
|
prompt="Face of a fox, high resolution, sitting on a park bench",
|
|
|
|
negative_prompt="orange, yellow, small",
|
2022-11-25 02:29:20 +01:00
|
|
|
sd_sampler=sampler,
|
2023-02-07 14:00:19 +01:00
|
|
|
sd_match_histograms=True,
|
2022-11-15 14:09:51 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
name = f"{sampler}_negative_prompt"
|
|
|
|
|
|
|
|
assert_equal(
|
|
|
|
model,
|
|
|
|
cfg,
|
|
|
|
f"runway_sd_{strategy.capitalize()}_{name}.png",
|
|
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
2023-02-07 14:00:19 +01:00
|
|
|
fx=1,
|
2022-11-15 14:09:51 +01:00
|
|
|
)
|
2023-01-05 15:07:39 +01:00
|
|
|
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda"])
|
2023-01-05 15:07:39 +01:00
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
|
|
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
|
|
|
|
@pytest.mark.parametrize("cpu_textencoder", [False])
|
|
|
|
@pytest.mark.parametrize("disable_nsfw", [False])
|
2023-02-07 14:00:19 +01:00
|
|
|
def test_runway_sd_1_5_sd_scale(
|
|
|
|
sd_device, strategy, sampler, cpu_textencoder, disable_nsfw
|
|
|
|
):
|
|
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
2023-01-05 15:07:39 +01:00
|
|
|
return
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
sd_steps = 50 if sd_device == "cuda" else 1
|
|
|
|
model = ModelManager(
|
|
|
|
name="sd1.5",
|
|
|
|
device=torch.device(sd_device),
|
|
|
|
hf_access_token="",
|
|
|
|
sd_run_local=True,
|
|
|
|
disable_nsfw=disable_nsfw,
|
|
|
|
sd_cpu_textencoder=cpu_textencoder,
|
|
|
|
)
|
|
|
|
cfg = get_config(
|
|
|
|
strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps, sd_scale=0.85
|
|
|
|
)
|
2023-01-05 15:07:39 +01:00
|
|
|
cfg.sd_sampler = sampler
|
|
|
|
|
|
|
|
name = f"device_{sd_device}_{sampler}_cpu_textencoder_{cpu_textencoder}_disnsfw_{disable_nsfw}"
|
|
|
|
|
|
|
|
assert_equal(
|
|
|
|
model,
|
|
|
|
cfg,
|
|
|
|
f"runway_sd_{strategy.capitalize()}_{name}_sdscale.png",
|
|
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
2023-02-07 14:00:19 +01:00
|
|
|
fx=1.3,
|
2023-01-05 15:07:39 +01:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda"])
|
2023-01-05 15:07:39 +01:00
|
|
|
@pytest.mark.parametrize("strategy", [HDStrategy.ORIGINAL])
|
|
|
|
@pytest.mark.parametrize("sampler", [SDSampler.k_euler_a])
|
|
|
|
def test_runway_sd_1_5_cpu_offload(sd_device, strategy, sampler):
|
2023-02-07 14:00:19 +01:00
|
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
2023-01-05 15:07:39 +01:00
|
|
|
return
|
|
|
|
|
2023-02-07 14:00:19 +01:00
|
|
|
sd_steps = 50 if sd_device == "cuda" else 1
|
|
|
|
model = ModelManager(
|
|
|
|
name="sd1.5",
|
|
|
|
device=torch.device(sd_device),
|
|
|
|
hf_access_token="",
|
|
|
|
sd_run_local=True,
|
|
|
|
disable_nsfw=True,
|
|
|
|
sd_cpu_textencoder=False,
|
|
|
|
cpu_offload=True,
|
|
|
|
)
|
|
|
|
cfg = get_config(
|
|
|
|
strategy, prompt="a fox sitting on a bench", sd_steps=sd_steps, sd_scale=0.85
|
|
|
|
)
|
2023-01-05 15:07:39 +01:00
|
|
|
cfg.sd_sampler = sampler
|
|
|
|
|
|
|
|
name = f"device_{sd_device}_{sampler}"
|
|
|
|
|
|
|
|
assert_equal(
|
|
|
|
model,
|
|
|
|
cfg,
|
|
|
|
f"runway_sd_{strategy.capitalize()}_{name}_cpu_offload.png",
|
|
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
|
|
)
|
2023-01-07 01:52:11 +01:00
|
|
|
|
2023-03-29 16:05:34 +02:00
|
|
|
|
|
|
|
@pytest.mark.parametrize("sd_device", ["cuda", "mps"])
|
|
|
|
@pytest.mark.parametrize("sampler", [SDSampler.uni_pc])
|
|
|
|
def test_local_file_path(sd_device, sampler):
|
|
|
|
if sd_device == "cuda" and not torch.cuda.is_available():
|
|
|
|
return
|
|
|
|
|
|
|
|
sd_steps = 1 if sd_device == "cpu" else 50
|
|
|
|
model = ModelManager(
|
|
|
|
name="sd1.5",
|
|
|
|
device=torch.device(sd_device),
|
|
|
|
hf_access_token="",
|
|
|
|
sd_run_local=True,
|
|
|
|
disable_nsfw=True,
|
|
|
|
sd_cpu_textencoder=False,
|
|
|
|
cpu_offload=True,
|
|
|
|
sd_local_model_path="/Users/cwq/data/models/sd-v1-5-inpainting.ckpt",
|
|
|
|
)
|
|
|
|
cfg = get_config(
|
|
|
|
HDStrategy.ORIGINAL,
|
|
|
|
prompt="a fox sitting on a bench",
|
|
|
|
sd_steps=sd_steps,
|
|
|
|
)
|
|
|
|
cfg.sd_sampler = sampler
|
|
|
|
|
|
|
|
name = f"device_{sd_device}_{sampler}"
|
|
|
|
|
|
|
|
assert_equal(
|
|
|
|
model,
|
|
|
|
cfg,
|
|
|
|
f"sd_local_model_{name}.png",
|
|
|
|
img_p=current_dir / "overture-creations-5sI6fQgYIuo.png",
|
|
|
|
mask_p=current_dir / "overture-creations-5sI6fQgYIuo_mask.png",
|
|
|
|
)
|