add sam_hq
This commit is contained in:
parent
6447e821cb
commit
b358e6cbce
@ -43,6 +43,9 @@ def get_cache_path_by_url(url):
|
|||||||
|
|
||||||
|
|
||||||
def download_model(url, model_md5: str = None):
|
def download_model(url, model_md5: str = None):
|
||||||
|
if os.path.exists(url):
|
||||||
|
cached_file = url
|
||||||
|
else:
|
||||||
cached_file = get_cache_path_by_url(url)
|
cached_file = get_cache_path_by_url(url)
|
||||||
if not os.path.exists(cached_file):
|
if not os.path.exists(cached_file):
|
||||||
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
|
||||||
|
@ -8,6 +8,7 @@ from loguru import logger
|
|||||||
from iopaint.helper import download_model
|
from iopaint.helper import download_model
|
||||||
from iopaint.plugins.base_plugin import BasePlugin
|
from iopaint.plugins.base_plugin import BasePlugin
|
||||||
from iopaint.plugins.segment_anything import SamPredictor, sam_model_registry
|
from iopaint.plugins.segment_anything import SamPredictor, sam_model_registry
|
||||||
|
from iopaint.plugins.segment_anything.predictor_hq import SamHQPredictor
|
||||||
from iopaint.schema import RunPluginRequest
|
from iopaint.schema import RunPluginRequest
|
||||||
|
|
||||||
# 从小到大
|
# 从小到大
|
||||||
@ -28,6 +29,18 @@ SEGMENT_ANYTHING_MODELS = {
|
|||||||
"url": "https://github.com/Sanster/models/releases/download/MobileSAM/mobile_sam.pt",
|
"url": "https://github.com/Sanster/models/releases/download/MobileSAM/mobile_sam.pt",
|
||||||
"md5": "f3c0d8cda613564d499310dab6c812cd",
|
"md5": "f3c0d8cda613564d499310dab6c812cd",
|
||||||
},
|
},
|
||||||
|
"sam_hq_vit_b": {
|
||||||
|
"url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_b.pth",
|
||||||
|
"md5": "c6b8953247bcfdc8bb8ef91e36a6cacc",
|
||||||
|
},
|
||||||
|
"sam_hq_vit_l": {
|
||||||
|
"url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth",
|
||||||
|
"md5": "08947267966e4264fb39523eccc33f86",
|
||||||
|
},
|
||||||
|
"sam_hq_vit_h": {
|
||||||
|
"url": "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth",
|
||||||
|
"md5": "3560f6b6a5a6edacd814a1325c39640a",
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -47,6 +60,11 @@ class InteractiveSeg(BasePlugin):
|
|||||||
SEGMENT_ANYTHING_MODELS[model_name]["md5"],
|
SEGMENT_ANYTHING_MODELS[model_name]["md5"],
|
||||||
)
|
)
|
||||||
logger.info(f"SegmentAnything model path: {model_path}")
|
logger.info(f"SegmentAnything model path: {model_path}")
|
||||||
|
if "sam_hq" in model_name:
|
||||||
|
self.predictor = SamHQPredictor(
|
||||||
|
sam_model_registry[model_name](checkpoint=model_path).to(self.device)
|
||||||
|
)
|
||||||
|
else:
|
||||||
self.predictor = SamPredictor(
|
self.predictor = SamPredictor(
|
||||||
sam_model_registry[model_name](checkpoint=model_path).to(self.device)
|
sam_model_registry[model_name](checkpoint=model_path).to(self.device)
|
||||||
)
|
)
|
||||||
|
@ -5,10 +5,12 @@
|
|||||||
# LICENSE file in the root directory of this source tree.
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
from .build_sam import (
|
from .build_sam import (
|
||||||
build_sam,
|
|
||||||
build_sam_vit_h,
|
build_sam_vit_h,
|
||||||
build_sam_vit_l,
|
build_sam_vit_l,
|
||||||
build_sam_vit_b,
|
build_sam_vit_b,
|
||||||
|
build_sam_vit_h_hq,
|
||||||
|
build_sam_vit_l_hq,
|
||||||
|
build_sam_vit_b_hq,
|
||||||
sam_model_registry,
|
sam_model_registry,
|
||||||
)
|
)
|
||||||
from .predictor import SamPredictor
|
from .predictor import SamPredictor
|
||||||
|
@ -17,6 +17,9 @@ from .modeling import (
|
|||||||
Sam,
|
Sam,
|
||||||
TwoWayTransformer,
|
TwoWayTransformer,
|
||||||
)
|
)
|
||||||
|
from .modeling.image_encoder_hq import ImageEncoderViTHQ
|
||||||
|
from .modeling.mask_decoder import MaskDecoderHQ
|
||||||
|
from .modeling.sam_hq import SamHQ
|
||||||
|
|
||||||
|
|
||||||
def build_sam_vit_h(checkpoint=None):
|
def build_sam_vit_h(checkpoint=None):
|
||||||
@ -29,9 +32,6 @@ def build_sam_vit_h(checkpoint=None):
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
build_sam = build_sam_vit_h
|
|
||||||
|
|
||||||
|
|
||||||
def build_sam_vit_l(checkpoint=None):
|
def build_sam_vit_l(checkpoint=None):
|
||||||
return _build_sam(
|
return _build_sam(
|
||||||
encoder_embed_dim=1024,
|
encoder_embed_dim=1024,
|
||||||
@ -104,11 +104,44 @@ def build_sam_vit_t(checkpoint=None):
|
|||||||
return mobile_sam
|
return mobile_sam
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_h_hq(checkpoint=None):
|
||||||
|
return _build_sam_hq(
|
||||||
|
encoder_embed_dim=1280,
|
||||||
|
encoder_depth=32,
|
||||||
|
encoder_num_heads=16,
|
||||||
|
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_l_hq(checkpoint=None):
|
||||||
|
return _build_sam_hq(
|
||||||
|
encoder_embed_dim=1024,
|
||||||
|
encoder_depth=24,
|
||||||
|
encoder_num_heads=16,
|
||||||
|
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def build_sam_vit_b_hq(checkpoint=None):
|
||||||
|
return _build_sam_hq(
|
||||||
|
encoder_embed_dim=768,
|
||||||
|
encoder_depth=12,
|
||||||
|
encoder_num_heads=12,
|
||||||
|
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||||
|
checkpoint=checkpoint,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
sam_model_registry = {
|
sam_model_registry = {
|
||||||
"default": build_sam,
|
"default": build_sam_vit_h,
|
||||||
"vit_h": build_sam,
|
"vit_h": build_sam_vit_h,
|
||||||
"vit_l": build_sam_vit_l,
|
"vit_l": build_sam_vit_l,
|
||||||
"vit_b": build_sam_vit_b,
|
"vit_b": build_sam_vit_b,
|
||||||
|
"sam_hq_vit_h": build_sam_vit_h_hq,
|
||||||
|
"sam_hq_vit_l": build_sam_vit_l_hq,
|
||||||
|
"sam_hq_vit_b": build_sam_vit_b_hq,
|
||||||
"mobile_sam": build_sam_vit_t,
|
"mobile_sam": build_sam_vit_t,
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -166,3 +199,71 @@ def _build_sam(
|
|||||||
state_dict = torch.load(f)
|
state_dict = torch.load(f)
|
||||||
sam.load_state_dict(state_dict)
|
sam.load_state_dict(state_dict)
|
||||||
return sam
|
return sam
|
||||||
|
|
||||||
|
|
||||||
|
def _build_sam_hq(
|
||||||
|
encoder_embed_dim,
|
||||||
|
encoder_depth,
|
||||||
|
encoder_num_heads,
|
||||||
|
encoder_global_attn_indexes,
|
||||||
|
checkpoint=None,
|
||||||
|
):
|
||||||
|
prompt_embed_dim = 256
|
||||||
|
image_size = 1024
|
||||||
|
vit_patch_size = 16
|
||||||
|
image_embedding_size = image_size // vit_patch_size
|
||||||
|
sam = SamHQ(
|
||||||
|
image_encoder=ImageEncoderViTHQ(
|
||||||
|
depth=encoder_depth,
|
||||||
|
embed_dim=encoder_embed_dim,
|
||||||
|
img_size=image_size,
|
||||||
|
mlp_ratio=4,
|
||||||
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||||
|
num_heads=encoder_num_heads,
|
||||||
|
patch_size=vit_patch_size,
|
||||||
|
qkv_bias=True,
|
||||||
|
use_rel_pos=True,
|
||||||
|
global_attn_indexes=encoder_global_attn_indexes,
|
||||||
|
window_size=14,
|
||||||
|
out_chans=prompt_embed_dim,
|
||||||
|
),
|
||||||
|
prompt_encoder=PromptEncoder(
|
||||||
|
embed_dim=prompt_embed_dim,
|
||||||
|
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||||
|
input_image_size=(image_size, image_size),
|
||||||
|
mask_in_chans=16,
|
||||||
|
),
|
||||||
|
mask_decoder=MaskDecoderHQ(
|
||||||
|
num_multimask_outputs=3,
|
||||||
|
transformer=TwoWayTransformer(
|
||||||
|
depth=2,
|
||||||
|
embedding_dim=prompt_embed_dim,
|
||||||
|
mlp_dim=2048,
|
||||||
|
num_heads=8,
|
||||||
|
),
|
||||||
|
transformer_dim=prompt_embed_dim,
|
||||||
|
iou_head_depth=3,
|
||||||
|
iou_head_hidden_dim=256,
|
||||||
|
vit_dim=encoder_embed_dim,
|
||||||
|
),
|
||||||
|
pixel_mean=[123.675, 116.28, 103.53],
|
||||||
|
pixel_std=[58.395, 57.12, 57.375],
|
||||||
|
)
|
||||||
|
sam.eval()
|
||||||
|
if checkpoint is not None:
|
||||||
|
with open(checkpoint, "rb") as f:
|
||||||
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
state_dict = torch.load(f, map_location=device)
|
||||||
|
info = sam.load_state_dict(state_dict, strict=False)
|
||||||
|
print(info)
|
||||||
|
for n, p in sam.named_parameters():
|
||||||
|
if (
|
||||||
|
"hf_token" not in n
|
||||||
|
and "hf_mlp" not in n
|
||||||
|
and "compress_vit_feat" not in n
|
||||||
|
and "embedding_encoder" not in n
|
||||||
|
and "embedding_maskfeature" not in n
|
||||||
|
):
|
||||||
|
p.requires_grad = False
|
||||||
|
|
||||||
|
return sam
|
||||||
|
422
iopaint/plugins/segment_anything/modeling/image_encoder_hq.py
Normal file
422
iopaint/plugins/segment_anything/modeling/image_encoder_hq.py
Normal file
@ -0,0 +1,422 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from typing import Optional, Tuple, Type
|
||||||
|
|
||||||
|
from .common import LayerNorm2d, MLPBlock
|
||||||
|
|
||||||
|
|
||||||
|
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
||||||
|
class ImageEncoderViTHQ(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
img_size: int = 1024,
|
||||||
|
patch_size: int = 16,
|
||||||
|
in_chans: int = 3,
|
||||||
|
embed_dim: int = 768,
|
||||||
|
depth: int = 12,
|
||||||
|
num_heads: int = 12,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
out_chans: int = 256,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||||||
|
use_abs_pos: bool = True,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
window_size: int = 0,
|
||||||
|
global_attn_indexes: Tuple[int, ...] = (),
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
img_size (int): Input image size.
|
||||||
|
patch_size (int): Patch size.
|
||||||
|
in_chans (int): Number of input image channels.
|
||||||
|
embed_dim (int): Patch embedding dimension.
|
||||||
|
depth (int): Depth of ViT.
|
||||||
|
num_heads (int): Number of attention heads in each ViT block.
|
||||||
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
norm_layer (nn.Module): Normalization layer.
|
||||||
|
act_layer (nn.Module): Activation layer.
|
||||||
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
||||||
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
window_size (int): Window size for window attention blocks.
|
||||||
|
global_attn_indexes (list): Indexes for blocks using global attention.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.img_size = img_size
|
||||||
|
|
||||||
|
self.patch_embed = PatchEmbed(
|
||||||
|
kernel_size=(patch_size, patch_size),
|
||||||
|
stride=(patch_size, patch_size),
|
||||||
|
in_chans=in_chans,
|
||||||
|
embed_dim=embed_dim,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pos_embed: Optional[nn.Parameter] = None
|
||||||
|
if use_abs_pos:
|
||||||
|
# Initialize absolute positional embedding with pretrain image size.
|
||||||
|
self.pos_embed = nn.Parameter(
|
||||||
|
torch.zeros(
|
||||||
|
1, img_size // patch_size, img_size // patch_size, embed_dim
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.blocks = nn.ModuleList()
|
||||||
|
for i in range(depth):
|
||||||
|
block = Block(
|
||||||
|
dim=embed_dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
mlp_ratio=mlp_ratio,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
norm_layer=norm_layer,
|
||||||
|
act_layer=act_layer,
|
||||||
|
use_rel_pos=use_rel_pos,
|
||||||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||||||
|
window_size=window_size if i not in global_attn_indexes else 0,
|
||||||
|
input_size=(img_size // patch_size, img_size // patch_size),
|
||||||
|
)
|
||||||
|
self.blocks.append(block)
|
||||||
|
|
||||||
|
self.neck = nn.Sequential(
|
||||||
|
nn.Conv2d(
|
||||||
|
embed_dim,
|
||||||
|
out_chans,
|
||||||
|
kernel_size=1,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
|
LayerNorm2d(out_chans),
|
||||||
|
nn.Conv2d(
|
||||||
|
out_chans,
|
||||||
|
out_chans,
|
||||||
|
kernel_size=3,
|
||||||
|
padding=1,
|
||||||
|
bias=False,
|
||||||
|
),
|
||||||
|
LayerNorm2d(out_chans),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.patch_embed(x)
|
||||||
|
if self.pos_embed is not None:
|
||||||
|
x = x + self.pos_embed
|
||||||
|
|
||||||
|
interm_embeddings = []
|
||||||
|
for blk in self.blocks:
|
||||||
|
x = blk(x)
|
||||||
|
if blk.window_size == 0:
|
||||||
|
interm_embeddings.append(x)
|
||||||
|
|
||||||
|
x = self.neck(x.permute(0, 3, 1, 2))
|
||||||
|
|
||||||
|
return x, interm_embeddings
|
||||||
|
|
||||||
|
|
||||||
|
class Block(nn.Module):
|
||||||
|
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_heads: int,
|
||||||
|
mlp_ratio: float = 4.0,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||||
|
act_layer: Type[nn.Module] = nn.GELU,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
window_size: int = 0,
|
||||||
|
input_size: Optional[Tuple[int, int]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
num_heads (int): Number of attention heads in each ViT block.
|
||||||
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
norm_layer (nn.Module): Normalization layer.
|
||||||
|
act_layer (nn.Module): Activation layer.
|
||||||
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
window_size (int): Window size for window attention blocks. If it equals 0, then
|
||||||
|
use global attention.
|
||||||
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||||
|
positional parameter size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.norm1 = norm_layer(dim)
|
||||||
|
self.attn = Attention(
|
||||||
|
dim,
|
||||||
|
num_heads=num_heads,
|
||||||
|
qkv_bias=qkv_bias,
|
||||||
|
use_rel_pos=use_rel_pos,
|
||||||
|
rel_pos_zero_init=rel_pos_zero_init,
|
||||||
|
input_size=input_size if window_size == 0 else (window_size, window_size),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm2 = norm_layer(dim)
|
||||||
|
self.mlp = MLPBlock(
|
||||||
|
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
|
||||||
|
)
|
||||||
|
|
||||||
|
self.window_size = window_size
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
shortcut = x
|
||||||
|
x = self.norm1(x)
|
||||||
|
# Window partition
|
||||||
|
if self.window_size > 0:
|
||||||
|
H, W = x.shape[1], x.shape[2]
|
||||||
|
x, pad_hw = window_partition(x, self.window_size)
|
||||||
|
|
||||||
|
x = self.attn(x)
|
||||||
|
# Reverse window partition
|
||||||
|
if self.window_size > 0:
|
||||||
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
||||||
|
|
||||||
|
x = shortcut + x
|
||||||
|
x = x + self.mlp(self.norm2(x))
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
"""Multi-head Attention block with relative position embeddings."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
dim: int,
|
||||||
|
num_heads: int = 8,
|
||||||
|
qkv_bias: bool = True,
|
||||||
|
use_rel_pos: bool = False,
|
||||||
|
rel_pos_zero_init: bool = True,
|
||||||
|
input_size: Optional[Tuple[int, int]] = None,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
dim (int): Number of input channels.
|
||||||
|
num_heads (int): Number of attention heads.
|
||||||
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||||
|
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||||
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||||
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
||||||
|
positional parameter size.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.num_heads = num_heads
|
||||||
|
head_dim = dim // num_heads
|
||||||
|
self.scale = head_dim**-0.5
|
||||||
|
|
||||||
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||||
|
self.proj = nn.Linear(dim, dim)
|
||||||
|
|
||||||
|
self.use_rel_pos = use_rel_pos
|
||||||
|
if self.use_rel_pos:
|
||||||
|
assert (
|
||||||
|
input_size is not None
|
||||||
|
), "Input size must be provided if using relative positional encoding."
|
||||||
|
# initialize relative positional embeddings
|
||||||
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||||
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
B, H, W, _ = x.shape
|
||||||
|
# qkv with shape (3, B, nHead, H * W, C)
|
||||||
|
qkv = (
|
||||||
|
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
)
|
||||||
|
# q, k, v with shape (B * nHead, H * W, C)
|
||||||
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
||||||
|
|
||||||
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||||
|
|
||||||
|
if self.use_rel_pos:
|
||||||
|
attn = add_decomposed_rel_pos(
|
||||||
|
attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
|
||||||
|
)
|
||||||
|
|
||||||
|
attn = attn.softmax(dim=-1)
|
||||||
|
x = (
|
||||||
|
(attn @ v)
|
||||||
|
.view(B, self.num_heads, H, W, -1)
|
||||||
|
.permute(0, 2, 3, 1, 4)
|
||||||
|
.reshape(B, H, W, -1)
|
||||||
|
)
|
||||||
|
x = self.proj(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def window_partition(
|
||||||
|
x: torch.Tensor, window_size: int
|
||||||
|
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||||
|
"""
|
||||||
|
Partition into non-overlapping windows with padding if needed.
|
||||||
|
Args:
|
||||||
|
x (tensor): input tokens with [B, H, W, C].
|
||||||
|
window_size (int): window size.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||||
|
(Hp, Wp): padded height and width before partition
|
||||||
|
"""
|
||||||
|
B, H, W, C = x.shape
|
||||||
|
|
||||||
|
pad_h = (window_size - H % window_size) % window_size
|
||||||
|
pad_w = (window_size - W % window_size) % window_size
|
||||||
|
if pad_h > 0 or pad_w > 0:
|
||||||
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||||
|
Hp, Wp = H + pad_h, W + pad_w
|
||||||
|
|
||||||
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||||
|
windows = (
|
||||||
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||||
|
)
|
||||||
|
return windows, (Hp, Wp)
|
||||||
|
|
||||||
|
|
||||||
|
def window_unpartition(
|
||||||
|
windows: torch.Tensor,
|
||||||
|
window_size: int,
|
||||||
|
pad_hw: Tuple[int, int],
|
||||||
|
hw: Tuple[int, int],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Window unpartition into original sequences and removing padding.
|
||||||
|
Args:
|
||||||
|
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||||
|
window_size (int): window size.
|
||||||
|
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||||
|
hw (Tuple): original height and width (H, W) before padding.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
x: unpartitioned sequences with [B, H, W, C].
|
||||||
|
"""
|
||||||
|
Hp, Wp = pad_hw
|
||||||
|
H, W = hw
|
||||||
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||||
|
x = windows.view(
|
||||||
|
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
||||||
|
)
|
||||||
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||||
|
|
||||||
|
if Hp > H or Wp > W:
|
||||||
|
x = x[:, :H, :W, :].contiguous()
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Get relative positional embeddings according to the relative positions of
|
||||||
|
query and key sizes.
|
||||||
|
Args:
|
||||||
|
q_size (int): size of query q.
|
||||||
|
k_size (int): size of key k.
|
||||||
|
rel_pos (Tensor): relative position embeddings (L, C).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Extracted positional embeddings according to relative positions.
|
||||||
|
"""
|
||||||
|
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||||||
|
# Interpolate rel pos if needed.
|
||||||
|
if rel_pos.shape[0] != max_rel_dist:
|
||||||
|
# Interpolate rel pos.
|
||||||
|
rel_pos_resized = F.interpolate(
|
||||||
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||||
|
size=max_rel_dist,
|
||||||
|
mode="linear",
|
||||||
|
)
|
||||||
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||||
|
else:
|
||||||
|
rel_pos_resized = rel_pos
|
||||||
|
|
||||||
|
# Scale the coords with short length if shapes for q and k are different.
|
||||||
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||||||
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||||||
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||||||
|
|
||||||
|
return rel_pos_resized[relative_coords.long()]
|
||||||
|
|
||||||
|
|
||||||
|
def add_decomposed_rel_pos(
|
||||||
|
attn: torch.Tensor,
|
||||||
|
q: torch.Tensor,
|
||||||
|
rel_pos_h: torch.Tensor,
|
||||||
|
rel_pos_w: torch.Tensor,
|
||||||
|
q_size: Tuple[int, int],
|
||||||
|
k_size: Tuple[int, int],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
||||||
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
||||||
|
Args:
|
||||||
|
attn (Tensor): attention map.
|
||||||
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||||
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
||||||
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
||||||
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
||||||
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
attn (Tensor): attention map with added relative positional embeddings.
|
||||||
|
"""
|
||||||
|
q_h, q_w = q_size
|
||||||
|
k_h, k_w = k_size
|
||||||
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
||||||
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
||||||
|
|
||||||
|
B, _, dim = q.shape
|
||||||
|
r_q = q.reshape(B, q_h, q_w, dim)
|
||||||
|
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
||||||
|
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
||||||
|
|
||||||
|
attn = (
|
||||||
|
attn.view(B, q_h, q_w, k_h, k_w)
|
||||||
|
+ rel_h[:, :, :, :, None]
|
||||||
|
+ rel_w[:, :, :, None, :]
|
||||||
|
).view(B, q_h * q_w, k_h * k_w)
|
||||||
|
|
||||||
|
return attn
|
||||||
|
|
||||||
|
|
||||||
|
class PatchEmbed(nn.Module):
|
||||||
|
"""
|
||||||
|
Image to Patch Embedding.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
kernel_size: Tuple[int, int] = (16, 16),
|
||||||
|
stride: Tuple[int, int] = (16, 16),
|
||||||
|
padding: Tuple[int, int] = (0, 0),
|
||||||
|
in_chans: int = 3,
|
||||||
|
embed_dim: int = 768,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
kernel_size (Tuple): kernel size of the projection layer.
|
||||||
|
stride (Tuple): stride of the projection layer.
|
||||||
|
padding (Tuple): padding size of the projection layer.
|
||||||
|
in_chans (int): Number of input image channels.
|
||||||
|
embed_dim (int): Patch embedding dimension.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.proj = nn.Conv2d(
|
||||||
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
x = self.proj(x)
|
||||||
|
# B C H W -> B H W C
|
||||||
|
x = x.permute(0, 2, 3, 1)
|
||||||
|
return x
|
@ -51,10 +51,14 @@ class MaskDecoder(nn.Module):
|
|||||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||||
|
|
||||||
self.output_upscaling = nn.Sequential(
|
self.output_upscaling = nn.Sequential(
|
||||||
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
LayerNorm2d(transformer_dim // 4),
|
LayerNorm2d(transformer_dim // 4),
|
||||||
activation(),
|
activation(),
|
||||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
activation(),
|
activation(),
|
||||||
)
|
)
|
||||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||||
@ -118,8 +122,12 @@ class MaskDecoder(nn.Module):
|
|||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
"""Predicts masks. See 'forward' for more details."""
|
"""Predicts masks. See 'forward' for more details."""
|
||||||
# Concatenate output tokens
|
# Concatenate output tokens
|
||||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
output_tokens = torch.cat(
|
||||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
||||||
|
)
|
||||||
|
output_tokens = output_tokens.unsqueeze(0).expand(
|
||||||
|
sparse_prompt_embeddings.size(0), -1, -1
|
||||||
|
)
|
||||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||||
|
|
||||||
# Expand per-image data in batch direction to be per-mask
|
# Expand per-image data in batch direction to be per-mask
|
||||||
@ -138,7 +146,9 @@ class MaskDecoder(nn.Module):
|
|||||||
upscaled_embedding = self.output_upscaling(src)
|
upscaled_embedding = self.output_upscaling(src)
|
||||||
hyper_in_list: List[torch.Tensor] = []
|
hyper_in_list: List[torch.Tensor] = []
|
||||||
for i in range(self.num_mask_tokens):
|
for i in range(self.num_mask_tokens):
|
||||||
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
hyper_in_list.append(
|
||||||
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
||||||
|
)
|
||||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||||
b, c, h, w = upscaled_embedding.shape
|
b, c, h, w = upscaled_embedding.shape
|
||||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||||
@ -148,6 +158,230 @@ class MaskDecoder(nn.Module):
|
|||||||
|
|
||||||
return masks, iou_pred
|
return masks, iou_pred
|
||||||
|
|
||||||
|
# https://github.com/SysCV/sam-hq/blob/main/segment_anything/modeling/mask_decoder_hq.py#L17
|
||||||
|
class MaskDecoderHQ(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
transformer_dim: int,
|
||||||
|
transformer: nn.Module,
|
||||||
|
num_multimask_outputs: int = 3,
|
||||||
|
activation: Type[nn.Module] = nn.GELU,
|
||||||
|
iou_head_depth: int = 3,
|
||||||
|
iou_head_hidden_dim: int = 256,
|
||||||
|
vit_dim: int = 1024,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Predicts masks given an image and prompt embeddings, using a
|
||||||
|
transformer architecture.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
transformer_dim (int): the channel dimension of the transformer
|
||||||
|
transformer (nn.Module): the transformer used to predict masks
|
||||||
|
num_multimask_outputs (int): the number of masks to predict
|
||||||
|
when disambiguating masks
|
||||||
|
activation (nn.Module): the type of activation to use when
|
||||||
|
upscaling masks
|
||||||
|
iou_head_depth (int): the depth of the MLP used to predict
|
||||||
|
mask quality
|
||||||
|
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
||||||
|
used to predict mask quality
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.transformer_dim = transformer_dim
|
||||||
|
self.transformer = transformer
|
||||||
|
|
||||||
|
self.num_multimask_outputs = num_multimask_outputs
|
||||||
|
|
||||||
|
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||||
|
self.num_mask_tokens = num_multimask_outputs + 1
|
||||||
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||||
|
|
||||||
|
self.output_upscaling = nn.Sequential(
|
||||||
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
|
LayerNorm2d(transformer_dim // 4),
|
||||||
|
activation(),
|
||||||
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
|
activation(),
|
||||||
|
)
|
||||||
|
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||||
|
[
|
||||||
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
||||||
|
for i in range(self.num_mask_tokens)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.iou_prediction_head = MLP(
|
||||||
|
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
||||||
|
)
|
||||||
|
|
||||||
|
# HQ-SAM parameters
|
||||||
|
self.hf_token = nn.Embedding(1, transformer_dim) # HQ-Ouptput-Token
|
||||||
|
self.hf_mlp = MLP(
|
||||||
|
transformer_dim, transformer_dim, transformer_dim // 8, 3
|
||||||
|
) # corresponding new MLP layer for HQ-Ouptput-Token
|
||||||
|
self.num_mask_tokens = self.num_mask_tokens + 1
|
||||||
|
|
||||||
|
# three conv fusion layers for obtaining HQ-Feature
|
||||||
|
self.compress_vit_feat = nn.Sequential(
|
||||||
|
nn.ConvTranspose2d(vit_dim, transformer_dim, kernel_size=2, stride=2),
|
||||||
|
LayerNorm2d(transformer_dim),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim, transformer_dim // 8, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.embedding_encoder = nn.Sequential(
|
||||||
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
|
LayerNorm2d(transformer_dim // 4),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.ConvTranspose2d(
|
||||||
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
||||||
|
),
|
||||||
|
)
|
||||||
|
self.embedding_maskfeature = nn.Sequential(
|
||||||
|
nn.Conv2d(transformer_dim // 8, transformer_dim // 4, 3, 1, 1),
|
||||||
|
LayerNorm2d(transformer_dim // 4),
|
||||||
|
nn.GELU(),
|
||||||
|
nn.Conv2d(transformer_dim // 4, transformer_dim // 8, 3, 1, 1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
image_embeddings: torch.Tensor,
|
||||||
|
image_pe: torch.Tensor,
|
||||||
|
sparse_prompt_embeddings: torch.Tensor,
|
||||||
|
dense_prompt_embeddings: torch.Tensor,
|
||||||
|
multimask_output: bool,
|
||||||
|
hq_token_only: bool,
|
||||||
|
interm_embeddings: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks given image and prompt embeddings.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image_embeddings (torch.Tensor): the embeddings from the ViT image encoder
|
||||||
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
||||||
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
||||||
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
||||||
|
multimask_output (bool): Whether to return multiple masks or a single
|
||||||
|
mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: batched predicted masks
|
||||||
|
torch.Tensor: batched predictions of mask quality
|
||||||
|
"""
|
||||||
|
vit_features = interm_embeddings[0].permute(
|
||||||
|
0, 3, 1, 2
|
||||||
|
) # early-layer ViT feature, after 1st global attention block in ViT
|
||||||
|
hq_features = self.embedding_encoder(image_embeddings) + self.compress_vit_feat(
|
||||||
|
vit_features
|
||||||
|
)
|
||||||
|
|
||||||
|
masks, iou_pred = self.predict_masks(
|
||||||
|
image_embeddings=image_embeddings,
|
||||||
|
image_pe=image_pe,
|
||||||
|
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||||
|
hq_features=hq_features,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Select the correct mask or masks for output
|
||||||
|
if multimask_output:
|
||||||
|
# mask with highest score
|
||||||
|
mask_slice = slice(1, self.num_mask_tokens - 1)
|
||||||
|
iou_pred = iou_pred[:, mask_slice]
|
||||||
|
iou_pred, max_iou_idx = torch.max(iou_pred, dim=1)
|
||||||
|
iou_pred = iou_pred.unsqueeze(1)
|
||||||
|
masks_multi = masks[:, mask_slice, :, :]
|
||||||
|
masks_sam = masks_multi[
|
||||||
|
torch.arange(masks_multi.size(0)), max_iou_idx
|
||||||
|
].unsqueeze(1)
|
||||||
|
else:
|
||||||
|
# singale mask output, default
|
||||||
|
mask_slice = slice(0, 1)
|
||||||
|
iou_pred = iou_pred[:, mask_slice]
|
||||||
|
masks_sam = masks[:, mask_slice]
|
||||||
|
|
||||||
|
masks_hq = masks[:, slice(self.num_mask_tokens - 1, self.num_mask_tokens)]
|
||||||
|
if hq_token_only:
|
||||||
|
masks = masks_hq
|
||||||
|
else:
|
||||||
|
masks = masks_sam + masks_hq
|
||||||
|
# Prepare output
|
||||||
|
return masks, iou_pred
|
||||||
|
|
||||||
|
def predict_masks(
|
||||||
|
self,
|
||||||
|
image_embeddings: torch.Tensor,
|
||||||
|
image_pe: torch.Tensor,
|
||||||
|
sparse_prompt_embeddings: torch.Tensor,
|
||||||
|
dense_prompt_embeddings: torch.Tensor,
|
||||||
|
hq_features: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""Predicts masks. See 'forward' for more details."""
|
||||||
|
# Concatenate output tokens
|
||||||
|
output_tokens = torch.cat(
|
||||||
|
[self.iou_token.weight, self.mask_tokens.weight, self.hf_token.weight],
|
||||||
|
dim=0,
|
||||||
|
)
|
||||||
|
output_tokens = output_tokens.unsqueeze(0).expand(
|
||||||
|
sparse_prompt_embeddings.size(0), -1, -1
|
||||||
|
)
|
||||||
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||||
|
|
||||||
|
# Expand per-image data in batch direction to be per-mask
|
||||||
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||||
|
src = src + dense_prompt_embeddings
|
||||||
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||||
|
b, c, h, w = src.shape
|
||||||
|
|
||||||
|
# Run the transformer
|
||||||
|
hs, src = self.transformer(src, pos_src, tokens)
|
||||||
|
iou_token_out = hs[:, 0, :]
|
||||||
|
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
||||||
|
|
||||||
|
# Upscale mask embeddings and predict masks using the mask tokens
|
||||||
|
src = src.transpose(1, 2).view(b, c, h, w)
|
||||||
|
|
||||||
|
upscaled_embedding_sam = self.output_upscaling(src)
|
||||||
|
upscaled_embedding_hq = self.embedding_maskfeature(
|
||||||
|
upscaled_embedding_sam
|
||||||
|
) + hq_features.repeat(b, 1, 1, 1)
|
||||||
|
|
||||||
|
hyper_in_list: List[torch.Tensor] = []
|
||||||
|
for i in range(self.num_mask_tokens):
|
||||||
|
if i < self.num_mask_tokens - 1:
|
||||||
|
hyper_in_list.append(
|
||||||
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
hyper_in_list.append(self.hf_mlp(mask_tokens_out[:, i, :]))
|
||||||
|
|
||||||
|
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||||
|
b, c, h, w = upscaled_embedding_sam.shape
|
||||||
|
|
||||||
|
masks_sam = (
|
||||||
|
hyper_in[:, : self.num_mask_tokens - 1]
|
||||||
|
@ upscaled_embedding_sam.view(b, c, h * w)
|
||||||
|
).view(b, -1, h, w)
|
||||||
|
masks_sam_hq = (
|
||||||
|
hyper_in[:, self.num_mask_tokens - 1 :]
|
||||||
|
@ upscaled_embedding_hq.view(b, c, h * w)
|
||||||
|
).view(b, -1, h, w)
|
||||||
|
masks = torch.cat([masks_sam, masks_sam_hq], dim=1)
|
||||||
|
# Generate mask quality predictions
|
||||||
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||||
|
|
||||||
|
return masks, iou_pred
|
||||||
|
|
||||||
|
|
||||||
# Lightly adapted from
|
# Lightly adapted from
|
||||||
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
||||||
|
177
iopaint/plugins/segment_anything/modeling/sam_hq.py
Normal file
177
iopaint/plugins/segment_anything/modeling/sam_hq.py
Normal file
@ -0,0 +1,177 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from typing import Any, Dict, List, Tuple
|
||||||
|
|
||||||
|
from .image_encoder import ImageEncoderViT
|
||||||
|
from .mask_decoder import MaskDecoder
|
||||||
|
from .prompt_encoder import PromptEncoder
|
||||||
|
|
||||||
|
|
||||||
|
class SamHQ(nn.Module):
|
||||||
|
mask_threshold: float = 0.0
|
||||||
|
image_format: str = "RGB"
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
image_encoder: ImageEncoderViT,
|
||||||
|
prompt_encoder: PromptEncoder,
|
||||||
|
mask_decoder: MaskDecoder,
|
||||||
|
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
||||||
|
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
SAM predicts object masks from an image and input prompts.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image_encoder (ImageEncoderViT): The backbone used to encode the
|
||||||
|
image into image embeddings that allow for efficient mask prediction.
|
||||||
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||||
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
||||||
|
and encoded prompts.
|
||||||
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||||
|
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.image_encoder = image_encoder
|
||||||
|
self.prompt_encoder = prompt_encoder
|
||||||
|
self.mask_decoder = mask_decoder
|
||||||
|
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
||||||
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> Any:
|
||||||
|
return self.pixel_mean.device
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batched_input: List[Dict[str, Any]],
|
||||||
|
multimask_output: bool,
|
||||||
|
hq_token_only: bool =False,
|
||||||
|
) -> List[Dict[str, torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Predicts masks end-to-end from provided images and prompts.
|
||||||
|
If prompts are not known in advance, using SamPredictor is
|
||||||
|
recommended over calling the model directly.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
batched_input (list(dict)): A list over input images, each a
|
||||||
|
dictionary with the following keys. A prompt key can be
|
||||||
|
excluded if it is not present.
|
||||||
|
'image': The image as a torch tensor in 3xHxW format,
|
||||||
|
already transformed for input to the model.
|
||||||
|
'original_size': (tuple(int, int)) The original size of
|
||||||
|
the image before transformation, as (H, W).
|
||||||
|
'point_coords': (torch.Tensor) Batched point prompts for
|
||||||
|
this image, with shape BxNx2. Already transformed to the
|
||||||
|
input frame of the model.
|
||||||
|
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
||||||
|
with shape BxN.
|
||||||
|
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
||||||
|
Already transformed to the input frame of the model.
|
||||||
|
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
||||||
|
in the form Bx1xHxW.
|
||||||
|
multimask_output (bool): Whether the model should predict multiple
|
||||||
|
disambiguating masks, or return a single mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(list(dict)): A list over input images, where each element is
|
||||||
|
as dictionary with the following keys.
|
||||||
|
'masks': (torch.Tensor) Batched binary mask predictions,
|
||||||
|
with shape BxCxHxW, where B is the number of input prompts,
|
||||||
|
C is determined by multimask_output, and (H, W) is the
|
||||||
|
original size of the image.
|
||||||
|
'iou_predictions': (torch.Tensor) The model's predictions
|
||||||
|
of mask quality, in shape BxC.
|
||||||
|
'low_res_logits': (torch.Tensor) Low resolution logits with
|
||||||
|
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
||||||
|
to subsequent iterations of prediction.
|
||||||
|
"""
|
||||||
|
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
||||||
|
image_embeddings, interm_embeddings = self.image_encoder(input_images)
|
||||||
|
interm_embeddings = interm_embeddings[0] # early layer
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for image_record, curr_embedding, curr_interm in zip(batched_input, image_embeddings, interm_embeddings):
|
||||||
|
if "point_coords" in image_record:
|
||||||
|
points = (image_record["point_coords"], image_record["point_labels"])
|
||||||
|
else:
|
||||||
|
points = None
|
||||||
|
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
||||||
|
points=points,
|
||||||
|
boxes=image_record.get("boxes", None),
|
||||||
|
masks=image_record.get("mask_inputs", None),
|
||||||
|
)
|
||||||
|
low_res_masks, iou_predictions = self.mask_decoder(
|
||||||
|
image_embeddings=curr_embedding.unsqueeze(0),
|
||||||
|
image_pe=self.prompt_encoder.get_dense_pe(),
|
||||||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_embeddings,
|
||||||
|
multimask_output=multimask_output,
|
||||||
|
hq_token_only=hq_token_only,
|
||||||
|
interm_embeddings=curr_interm.unsqueeze(0).unsqueeze(0),
|
||||||
|
)
|
||||||
|
masks = self.postprocess_masks(
|
||||||
|
low_res_masks,
|
||||||
|
input_size=image_record["image"].shape[-2:],
|
||||||
|
original_size=image_record["original_size"],
|
||||||
|
)
|
||||||
|
masks = masks > self.mask_threshold
|
||||||
|
outputs.append(
|
||||||
|
{
|
||||||
|
"masks": masks,
|
||||||
|
"iou_predictions": iou_predictions,
|
||||||
|
"low_res_logits": low_res_masks,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def postprocess_masks(
|
||||||
|
self,
|
||||||
|
masks: torch.Tensor,
|
||||||
|
input_size: Tuple[int, ...],
|
||||||
|
original_size: Tuple[int, ...],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Remove padding and upscale masks to the original image size.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
masks (torch.Tensor): Batched masks from the mask_decoder,
|
||||||
|
in BxCxHxW format.
|
||||||
|
input_size (tuple(int, int)): The size of the image input to the
|
||||||
|
model, in (H, W) format. Used to remove padding.
|
||||||
|
original_size (tuple(int, int)): The original size of the image
|
||||||
|
before resizing for input to the model, in (H, W) format.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
||||||
|
is given by original_size.
|
||||||
|
"""
|
||||||
|
masks = F.interpolate(
|
||||||
|
masks,
|
||||||
|
(self.image_encoder.img_size, self.image_encoder.img_size),
|
||||||
|
mode="bilinear",
|
||||||
|
align_corners=False,
|
||||||
|
)
|
||||||
|
masks = masks[..., : input_size[0], : input_size[1]]
|
||||||
|
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
||||||
|
return masks
|
||||||
|
|
||||||
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
|
"""Normalize pixel values and pad to a square input."""
|
||||||
|
# Normalize colors
|
||||||
|
x = (x - self.pixel_mean) / self.pixel_std
|
||||||
|
|
||||||
|
# Pad
|
||||||
|
h, w = x.shape[-2:]
|
||||||
|
padh = self.image_encoder.img_size - h
|
||||||
|
padw = self.image_encoder.img_size - w
|
||||||
|
x = F.pad(x, (0, padw, 0, padh))
|
||||||
|
return x
|
292
iopaint/plugins/segment_anything/predictor_hq.py
Normal file
292
iopaint/plugins/segment_anything/predictor_hq.py
Normal file
@ -0,0 +1,292 @@
|
|||||||
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||||
|
# All rights reserved.
|
||||||
|
|
||||||
|
# This source code is licensed under the license found in the
|
||||||
|
# LICENSE file in the root directory of this source tree.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from .modeling import Sam
|
||||||
|
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
from .utils.transforms import ResizeLongestSide
|
||||||
|
|
||||||
|
|
||||||
|
class SamHQPredictor:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
sam_model: Sam,
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Uses SAM to calculate the image embedding for an image, and then
|
||||||
|
allow repeated, efficient mask prediction given prompts.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
sam_model (Sam): The model to use for mask prediction.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
self.model = sam_model
|
||||||
|
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
||||||
|
self.reset_image()
|
||||||
|
|
||||||
|
def set_image(
|
||||||
|
self,
|
||||||
|
image: np.ndarray,
|
||||||
|
image_format: str = "RGB",
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Calculates the image embeddings for the provided image, allowing
|
||||||
|
masks to be predicted with the 'predict' method.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
image (np.ndarray): The image for calculating masks. Expects an
|
||||||
|
image in HWC uint8 format, with pixel values in [0, 255].
|
||||||
|
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
||||||
|
"""
|
||||||
|
assert image_format in [
|
||||||
|
"RGB",
|
||||||
|
"BGR",
|
||||||
|
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
||||||
|
# import pdb;pdb.set_trace()
|
||||||
|
if image_format != self.model.image_format:
|
||||||
|
image = image[..., ::-1]
|
||||||
|
|
||||||
|
# Transform the image to the form expected by the model
|
||||||
|
# import pdb;pdb.set_trace()
|
||||||
|
input_image = self.transform.apply_image(image)
|
||||||
|
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
||||||
|
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[
|
||||||
|
None, :, :, :
|
||||||
|
]
|
||||||
|
|
||||||
|
self.set_torch_image(input_image_torch, image.shape[:2])
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def set_torch_image(
|
||||||
|
self,
|
||||||
|
transformed_image: torch.Tensor,
|
||||||
|
original_image_size: Tuple[int, ...],
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Calculates the image embeddings for the provided image, allowing
|
||||||
|
masks to be predicted with the 'predict' method. Expects the input
|
||||||
|
image to be already transformed to the format expected by the model.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
transformed_image (torch.Tensor): The input image, with shape
|
||||||
|
1x3xHxW, which has been transformed with ResizeLongestSide.
|
||||||
|
original_image_size (tuple(int, int)): The size of the image
|
||||||
|
before transformation, in (H, W) format.
|
||||||
|
"""
|
||||||
|
assert (
|
||||||
|
len(transformed_image.shape) == 4
|
||||||
|
and transformed_image.shape[1] == 3
|
||||||
|
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
|
||||||
|
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
|
||||||
|
self.reset_image()
|
||||||
|
|
||||||
|
self.original_size = original_image_size
|
||||||
|
self.input_size = tuple(transformed_image.shape[-2:])
|
||||||
|
input_image = self.model.preprocess(transformed_image)
|
||||||
|
self.features, self.interm_features = self.model.image_encoder(input_image)
|
||||||
|
self.is_image_set = True
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self,
|
||||||
|
point_coords: Optional[np.ndarray] = None,
|
||||||
|
point_labels: Optional[np.ndarray] = None,
|
||||||
|
box: Optional[np.ndarray] = None,
|
||||||
|
mask_input: Optional[np.ndarray] = None,
|
||||||
|
multimask_output: bool = True,
|
||||||
|
return_logits: bool = False,
|
||||||
|
hq_token_only: bool = False,
|
||||||
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Predict masks for the given input prompts, using the currently set image.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
||||||
|
model. Each point is in (X,Y) in pixels.
|
||||||
|
point_labels (np.ndarray or None): A length N array of labels for the
|
||||||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||||
|
background point.
|
||||||
|
box (np.ndarray or None): A length 4 array given a box prompt to the
|
||||||
|
model, in XYXY format.
|
||||||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||||
|
coming from a previous prediction iteration. Has form 1xHxW, where
|
||||||
|
for SAM, H=W=256.
|
||||||
|
multimask_output (bool): If true, the model will return three masks.
|
||||||
|
For ambiguous input prompts (such as a single click), this will often
|
||||||
|
produce better masks than a single prediction. If only a single
|
||||||
|
mask is needed, the model's predicted quality score can be used
|
||||||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||||
|
input prompts, multimask_output=False can give better results.
|
||||||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||||||
|
instead of a binary mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(np.ndarray): The output masks in CxHxW format, where C is the
|
||||||
|
number of masks, and (H, W) is the original image size.
|
||||||
|
(np.ndarray): An array of length C containing the model's
|
||||||
|
predictions for the quality of each mask.
|
||||||
|
(np.ndarray): An array of shape CxHxW, where C is the number
|
||||||
|
of masks and H=W=256. These low resolution logits can be passed to
|
||||||
|
a subsequent iteration as mask input.
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError(
|
||||||
|
"An image must be set with .set_image(...) before mask prediction."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Transform input prompts
|
||||||
|
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
||||||
|
if point_coords is not None:
|
||||||
|
assert (
|
||||||
|
point_labels is not None
|
||||||
|
), "point_labels must be supplied if point_coords is supplied."
|
||||||
|
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
||||||
|
coords_torch = torch.as_tensor(
|
||||||
|
point_coords, dtype=torch.float, device=self.device
|
||||||
|
)
|
||||||
|
labels_torch = torch.as_tensor(
|
||||||
|
point_labels, dtype=torch.int, device=self.device
|
||||||
|
)
|
||||||
|
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
||||||
|
if box is not None:
|
||||||
|
box = self.transform.apply_boxes(box, self.original_size)
|
||||||
|
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
||||||
|
box_torch = box_torch[None, :]
|
||||||
|
if mask_input is not None:
|
||||||
|
mask_input_torch = torch.as_tensor(
|
||||||
|
mask_input, dtype=torch.float, device=self.device
|
||||||
|
)
|
||||||
|
mask_input_torch = mask_input_torch[None, :, :, :]
|
||||||
|
|
||||||
|
masks, iou_predictions, low_res_masks = self.predict_torch(
|
||||||
|
coords_torch,
|
||||||
|
labels_torch,
|
||||||
|
box_torch,
|
||||||
|
mask_input_torch,
|
||||||
|
multimask_output,
|
||||||
|
return_logits=return_logits,
|
||||||
|
hq_token_only=hq_token_only,
|
||||||
|
)
|
||||||
|
|
||||||
|
masks_np = masks[0].detach().cpu().numpy()
|
||||||
|
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
||||||
|
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
||||||
|
return masks_np, iou_predictions_np, low_res_masks_np
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def predict_torch(
|
||||||
|
self,
|
||||||
|
point_coords: Optional[torch.Tensor],
|
||||||
|
point_labels: Optional[torch.Tensor],
|
||||||
|
boxes: Optional[torch.Tensor] = None,
|
||||||
|
mask_input: Optional[torch.Tensor] = None,
|
||||||
|
multimask_output: bool = True,
|
||||||
|
return_logits: bool = False,
|
||||||
|
hq_token_only: bool = False,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Predict masks for the given input prompts, using the currently set image.
|
||||||
|
Input prompts are batched torch tensors and are expected to already be
|
||||||
|
transformed to the input frame using ResizeLongestSide.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
||||||
|
model. Each point is in (X,Y) in pixels.
|
||||||
|
point_labels (torch.Tensor or None): A BxN array of labels for the
|
||||||
|
point prompts. 1 indicates a foreground point and 0 indicates a
|
||||||
|
background point.
|
||||||
|
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
||||||
|
model, in XYXY format.
|
||||||
|
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
||||||
|
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
||||||
|
for SAM, H=W=256. Masks returned by a previous iteration of the
|
||||||
|
predict method do not need further transformation.
|
||||||
|
multimask_output (bool): If true, the model will return three masks.
|
||||||
|
For ambiguous input prompts (such as a single click), this will often
|
||||||
|
produce better masks than a single prediction. If only a single
|
||||||
|
mask is needed, the model's predicted quality score can be used
|
||||||
|
to select the best mask. For non-ambiguous prompts, such as multiple
|
||||||
|
input prompts, multimask_output=False can give better results.
|
||||||
|
return_logits (bool): If true, returns un-thresholded masks logits
|
||||||
|
instead of a binary mask.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
||||||
|
number of masks, and (H, W) is the original image size.
|
||||||
|
(torch.Tensor): An array of shape BxC containing the model's
|
||||||
|
predictions for the quality of each mask.
|
||||||
|
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
||||||
|
of masks and H=W=256. These low res logits can be passed to
|
||||||
|
a subsequent iteration as mask input.
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError(
|
||||||
|
"An image must be set with .set_image(...) before mask prediction."
|
||||||
|
)
|
||||||
|
|
||||||
|
if point_coords is not None:
|
||||||
|
points = (point_coords, point_labels)
|
||||||
|
else:
|
||||||
|
points = None
|
||||||
|
|
||||||
|
# Embed prompts
|
||||||
|
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
||||||
|
points=points,
|
||||||
|
boxes=boxes,
|
||||||
|
masks=mask_input,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Predict masks
|
||||||
|
low_res_masks, iou_predictions = self.model.mask_decoder(
|
||||||
|
image_embeddings=self.features,
|
||||||
|
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
||||||
|
sparse_prompt_embeddings=sparse_embeddings,
|
||||||
|
dense_prompt_embeddings=dense_embeddings,
|
||||||
|
multimask_output=multimask_output,
|
||||||
|
hq_token_only=hq_token_only,
|
||||||
|
interm_embeddings=self.interm_features,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Upscale the masks to the original image resolution
|
||||||
|
masks = self.model.postprocess_masks(
|
||||||
|
low_res_masks, self.input_size, self.original_size
|
||||||
|
)
|
||||||
|
|
||||||
|
if not return_logits:
|
||||||
|
masks = masks > self.model.mask_threshold
|
||||||
|
|
||||||
|
return masks, iou_predictions, low_res_masks
|
||||||
|
|
||||||
|
def get_image_embedding(self) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Returns the image embeddings for the currently set image, with
|
||||||
|
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
||||||
|
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
||||||
|
"""
|
||||||
|
if not self.is_image_set:
|
||||||
|
raise RuntimeError(
|
||||||
|
"An image must be set with .set_image(...) to generate an embedding."
|
||||||
|
)
|
||||||
|
assert (
|
||||||
|
self.features is not None
|
||||||
|
), "Features must exist if an image has been set."
|
||||||
|
return self.features
|
||||||
|
|
||||||
|
@property
|
||||||
|
def device(self) -> torch.device:
|
||||||
|
return self.model.device
|
||||||
|
|
||||||
|
def reset_image(self) -> None:
|
||||||
|
"""Resets the currently set image."""
|
||||||
|
self.is_image_set = False
|
||||||
|
self.features = None
|
||||||
|
self.orig_h = None
|
||||||
|
self.orig_w = None
|
||||||
|
self.input_h = None
|
||||||
|
self.input_w = None
|
@ -146,6 +146,9 @@ class InteractiveSegModel(Choices):
|
|||||||
vit_b = "vit_b"
|
vit_b = "vit_b"
|
||||||
vit_l = "vit_l"
|
vit_l = "vit_l"
|
||||||
vit_h = "vit_h"
|
vit_h = "vit_h"
|
||||||
|
sam_hq_vit_b = "sam_hq_vit_b"
|
||||||
|
sam_hq_vit_l = "sam_hq_vit_l"
|
||||||
|
sam_hq_vit_h = "sam_hq_vit_h"
|
||||||
mobile_sam = "mobile_sam"
|
mobile_sam = "mobile_sam"
|
||||||
|
|
||||||
|
|
||||||
@ -394,6 +397,15 @@ class InpaintRequest(BaseModel):
|
|||||||
return 0
|
return 0
|
||||||
return v
|
return v
|
||||||
|
|
||||||
|
@field_validator("sd_strength")
|
||||||
|
@classmethod
|
||||||
|
def validate_sd_strength(cls, v: float, values):
|
||||||
|
use_extender = values.data["use_extender"]
|
||||||
|
if use_extender:
|
||||||
|
logger.info(f"Extender is enabled, set sd_strength=1")
|
||||||
|
return 1.0
|
||||||
|
return v
|
||||||
|
|
||||||
|
|
||||||
class RunPluginRequest(BaseModel):
|
class RunPluginRequest(BaseModel):
|
||||||
name: str
|
name: str
|
||||||
|
@ -5,7 +5,7 @@ from PIL import Image
|
|||||||
|
|
||||||
from iopaint.helper import encode_pil_to_base64, gen_frontend_mask
|
from iopaint.helper import encode_pil_to_base64, gen_frontend_mask
|
||||||
from iopaint.plugins.anime_seg import AnimeSeg
|
from iopaint.plugins.anime_seg import AnimeSeg
|
||||||
from iopaint.schema import RunPluginRequest, RemoveBGModel
|
from iopaint.schema import RunPluginRequest, RemoveBGModel, InteractiveSegModel
|
||||||
from iopaint.tests.utils import check_device, current_dir, save_dir
|
from iopaint.tests.utils import check_device, current_dir, save_dir
|
||||||
|
|
||||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||||
@ -103,10 +103,11 @@ def test_restoreformer(device):
|
|||||||
_save(res, f"test_restoreformer_{device}.png")
|
_save(res, f"test_restoreformer_{device}.png")
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("name", InteractiveSegModel.values())
|
||||||
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
@pytest.mark.parametrize("device", ["cuda", "cpu", "mps"])
|
||||||
def test_segment_anything(device):
|
def test_segment_anything(name, device):
|
||||||
check_device(device)
|
check_device(device)
|
||||||
model = InteractiveSeg("vit_l", device)
|
model = InteractiveSeg(name, device)
|
||||||
new_mask = model.gen_mask(
|
new_mask = model.gen_mask(
|
||||||
rgb_img,
|
rgb_img,
|
||||||
RunPluginRequest(
|
RunPluginRequest(
|
||||||
@ -116,5 +117,5 @@ def test_segment_anything(device):
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
save_name = f"test_segment_anything_{device}.png"
|
save_name = f"test_segment_anything_{name}_{device}.png"
|
||||||
_save(new_mask, save_name)
|
_save(new_mask, save_name)
|
||||||
|
Loading…
Reference in New Issue
Block a user