anytext init
This commit is contained in:
parent
8beb02dfe2
commit
f5bd697687
0
iopaint/model/anytext/anytext_model.py
Normal file
0
iopaint/model/anytext/anytext_model.py
Normal file
395
iopaint/model/anytext/anytext_pipeline.py
Normal file
395
iopaint/model/anytext/anytext_pipeline.py
Normal file
@ -0,0 +1,395 @@
|
||||
"""
|
||||
AnyText: Multilingual Visual Text Generation And Editing
|
||||
Paper: https://arxiv.org/abs/2311.03054
|
||||
Code: https://github.com/tyxsspa/AnyText
|
||||
Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
"""
|
||||
import os
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
import torch
|
||||
import random
|
||||
import re
|
||||
import numpy as np
|
||||
import cv2
|
||||
import einops
|
||||
import time
|
||||
from PIL import ImageFont
|
||||
from iopaint.model.anytext.cldm.model import create_model, load_state_dict
|
||||
from iopaint.model.anytext.cldm.ddim_hacked import DDIMSampler
|
||||
from iopaint.model.anytext.utils import (
|
||||
resize_image,
|
||||
check_channels,
|
||||
draw_glyph,
|
||||
draw_glyph2,
|
||||
)
|
||||
|
||||
|
||||
BBOX_MAX_NUM = 8
|
||||
PLACE_HOLDER = "*"
|
||||
max_chars = 20
|
||||
|
||||
|
||||
class AnyTextPipeline:
|
||||
def __init__(self, cfg_path, model_dir, font_path, device, use_fp16=True):
|
||||
self.cfg_path = cfg_path
|
||||
self.model_dir = model_dir
|
||||
self.font_path = font_path
|
||||
self.use_fp16 = use_fp16
|
||||
self.device = device
|
||||
self.init_model()
|
||||
|
||||
"""
|
||||
return:
|
||||
result: list of images in numpy.ndarray format
|
||||
rst_code: 0: normal -1: error 1:warning
|
||||
rst_info: string of error or warning
|
||||
debug_info: string for debug, only valid if show_debug=True
|
||||
"""
|
||||
|
||||
def __call__(self, input_tensor, **forward_params):
|
||||
tic = time.time()
|
||||
str_warning = ""
|
||||
# get inputs
|
||||
seed = input_tensor.get("seed", -1)
|
||||
if seed == -1:
|
||||
seed = random.randint(0, 99999999)
|
||||
# seed_everything(seed)
|
||||
prompt = input_tensor.get("prompt")
|
||||
draw_pos = input_tensor.get("draw_pos")
|
||||
ori_image = input_tensor.get("ori_image")
|
||||
|
||||
mode = forward_params.get("mode")
|
||||
sort_priority = forward_params.get("sort_priority", "↕")
|
||||
show_debug = forward_params.get("show_debug", False)
|
||||
revise_pos = forward_params.get("revise_pos", False)
|
||||
img_count = forward_params.get("image_count", 4)
|
||||
ddim_steps = forward_params.get("ddim_steps", 20)
|
||||
w = forward_params.get("image_width", 512)
|
||||
h = forward_params.get("image_height", 512)
|
||||
strength = forward_params.get("strength", 1.0)
|
||||
cfg_scale = forward_params.get("cfg_scale", 9.0)
|
||||
eta = forward_params.get("eta", 0.0)
|
||||
a_prompt = forward_params.get(
|
||||
"a_prompt",
|
||||
"best quality, extremely detailed,4k, HD, supper legible text, clear text edges, clear strokes, neat writing, no watermarks",
|
||||
)
|
||||
n_prompt = forward_params.get(
|
||||
"n_prompt",
|
||||
"low-res, bad anatomy, extra digit, fewer digits, cropped, worst quality, low quality, watermark, unreadable text, messy words, distorted text, disorganized writing, advertising picture",
|
||||
)
|
||||
|
||||
prompt, texts = self.modify_prompt(prompt)
|
||||
if prompt is None and texts is None:
|
||||
return (
|
||||
None,
|
||||
-1,
|
||||
"You have input Chinese prompt but the translator is not loaded!",
|
||||
"",
|
||||
)
|
||||
n_lines = len(texts)
|
||||
if mode in ["text-generation", "gen"]:
|
||||
edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image
|
||||
elif mode in ["text-editing", "edit"]:
|
||||
if draw_pos is None or ori_image is None:
|
||||
return (
|
||||
None,
|
||||
-1,
|
||||
"Reference image and position image are needed for text editing!",
|
||||
"",
|
||||
)
|
||||
if isinstance(ori_image, str):
|
||||
ori_image = cv2.imread(ori_image)[..., ::-1]
|
||||
assert (
|
||||
ori_image is not None
|
||||
), f"Can't read ori_image image from{ori_image}!"
|
||||
elif isinstance(ori_image, torch.Tensor):
|
||||
ori_image = ori_image.cpu().numpy()
|
||||
else:
|
||||
assert isinstance(
|
||||
ori_image, np.ndarray
|
||||
), f"Unknown format of ori_image: {type(ori_image)}"
|
||||
edit_image = ori_image.clip(1, 255) # for mask reason
|
||||
edit_image = check_channels(edit_image)
|
||||
edit_image = resize_image(
|
||||
edit_image, max_length=768
|
||||
) # make w h multiple of 64, resize if w or h > max_length
|
||||
h, w = edit_image.shape[:2] # change h, w by input ref_img
|
||||
# preprocess pos_imgs(if numpy, make sure it's white pos in black bg)
|
||||
if draw_pos is None:
|
||||
pos_imgs = np.zeros((w, h, 1))
|
||||
if isinstance(draw_pos, str):
|
||||
draw_pos = cv2.imread(draw_pos)[..., ::-1]
|
||||
assert draw_pos is not None, f"Can't read draw_pos image from{draw_pos}!"
|
||||
pos_imgs = 255 - draw_pos
|
||||
elif isinstance(draw_pos, torch.Tensor):
|
||||
pos_imgs = draw_pos.cpu().numpy()
|
||||
else:
|
||||
assert isinstance(
|
||||
draw_pos, np.ndarray
|
||||
), f"Unknown format of draw_pos: {type(draw_pos)}"
|
||||
pos_imgs = pos_imgs[..., 0:1]
|
||||
pos_imgs = cv2.convertScaleAbs(pos_imgs)
|
||||
_, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY)
|
||||
# seprate pos_imgs
|
||||
pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority)
|
||||
if len(pos_imgs) == 0:
|
||||
pos_imgs = [np.zeros((h, w, 1))]
|
||||
if len(pos_imgs) < n_lines:
|
||||
if n_lines == 1 and texts[0] == " ":
|
||||
pass # text-to-image without text
|
||||
else:
|
||||
return (
|
||||
None,
|
||||
-1,
|
||||
f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!",
|
||||
"",
|
||||
)
|
||||
elif len(pos_imgs) > n_lines:
|
||||
str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt."
|
||||
# get pre_pos, poly_list, hint that needed for anytext
|
||||
pre_pos = []
|
||||
poly_list = []
|
||||
for input_pos in pos_imgs:
|
||||
if input_pos.mean() != 0:
|
||||
input_pos = (
|
||||
input_pos[..., np.newaxis]
|
||||
if len(input_pos.shape) == 2
|
||||
else input_pos
|
||||
)
|
||||
poly, pos_img = self.find_polygon(input_pos)
|
||||
pre_pos += [pos_img / 255.0]
|
||||
poly_list += [poly]
|
||||
else:
|
||||
pre_pos += [np.zeros((h, w, 1))]
|
||||
poly_list += [None]
|
||||
np_hint = np.sum(pre_pos, axis=0).clip(0, 1)
|
||||
# prepare info dict
|
||||
info = {}
|
||||
info["glyphs"] = []
|
||||
info["gly_line"] = []
|
||||
info["positions"] = []
|
||||
info["n_lines"] = [len(texts)] * img_count
|
||||
gly_pos_imgs = []
|
||||
for i in range(len(texts)):
|
||||
text = texts[i]
|
||||
if len(text) > max_chars:
|
||||
str_warning = (
|
||||
f'"{text}" length > max_chars: {max_chars}, will be cut off...'
|
||||
)
|
||||
text = text[:max_chars]
|
||||
gly_scale = 2
|
||||
if pre_pos[i].mean() != 0:
|
||||
gly_line = draw_glyph(self.font, text)
|
||||
glyphs = draw_glyph2(
|
||||
self.font,
|
||||
text,
|
||||
poly_list[i],
|
||||
scale=gly_scale,
|
||||
width=w,
|
||||
height=h,
|
||||
add_space=False,
|
||||
)
|
||||
gly_pos_img = cv2.drawContours(
|
||||
glyphs * 255, [poly_list[i] * gly_scale], 0, (255, 255, 255), 1
|
||||
)
|
||||
if revise_pos:
|
||||
resize_gly = cv2.resize(
|
||||
glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])
|
||||
)
|
||||
new_pos = cv2.morphologyEx(
|
||||
(resize_gly * 255).astype(np.uint8),
|
||||
cv2.MORPH_CLOSE,
|
||||
kernel=np.ones(
|
||||
(resize_gly.shape[0] // 10, resize_gly.shape[1] // 10),
|
||||
dtype=np.uint8,
|
||||
),
|
||||
iterations=1,
|
||||
)
|
||||
new_pos = (
|
||||
new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos
|
||||
)
|
||||
contours, _ = cv2.findContours(
|
||||
new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
if len(contours) != 1:
|
||||
str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..."
|
||||
else:
|
||||
rect = cv2.minAreaRect(contours[0])
|
||||
poly = np.int0(cv2.boxPoints(rect))
|
||||
pre_pos[i] = (
|
||||
cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0
|
||||
)
|
||||
gly_pos_img = cv2.drawContours(
|
||||
glyphs * 255, [poly * gly_scale], 0, (255, 255, 255), 1
|
||||
)
|
||||
gly_pos_imgs += [gly_pos_img] # for show
|
||||
else:
|
||||
glyphs = np.zeros((h * gly_scale, w * gly_scale, 1))
|
||||
gly_line = np.zeros((80, 512, 1))
|
||||
gly_pos_imgs += [
|
||||
np.zeros((h * gly_scale, w * gly_scale, 1))
|
||||
] # for show
|
||||
pos = pre_pos[i]
|
||||
info["glyphs"] += [self.arr2tensor(glyphs, img_count)]
|
||||
info["gly_line"] += [self.arr2tensor(gly_line, img_count)]
|
||||
info["positions"] += [self.arr2tensor(pos, img_count)]
|
||||
# get masked_x
|
||||
masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint)
|
||||
masked_img = np.transpose(masked_img, (2, 0, 1))
|
||||
masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device)
|
||||
if self.use_fp16:
|
||||
masked_img = masked_img.half()
|
||||
encoder_posterior = self.model.encode_first_stage(masked_img[None, ...])
|
||||
masked_x = self.model.get_first_stage_encoding(encoder_posterior).detach()
|
||||
if self.use_fp16:
|
||||
masked_x = masked_x.half()
|
||||
info["masked_x"] = torch.cat([masked_x for _ in range(img_count)], dim=0)
|
||||
|
||||
hint = self.arr2tensor(np_hint, img_count)
|
||||
cond = self.model.get_learned_conditioning(
|
||||
dict(
|
||||
c_concat=[hint],
|
||||
c_crossattn=[[prompt + " , " + a_prompt] * img_count],
|
||||
text_info=info,
|
||||
)
|
||||
)
|
||||
un_cond = self.model.get_learned_conditioning(
|
||||
dict(c_concat=[hint], c_crossattn=[[n_prompt] * img_count], text_info=info)
|
||||
)
|
||||
shape = (4, h // 8, w // 8)
|
||||
self.model.control_scales = [strength] * 13
|
||||
samples, intermediates = self.ddim_sampler.sample(
|
||||
ddim_steps,
|
||||
img_count,
|
||||
shape,
|
||||
cond,
|
||||
verbose=False,
|
||||
eta=eta,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=un_cond,
|
||||
)
|
||||
if self.use_fp16:
|
||||
samples = samples.half()
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = (
|
||||
(einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5)
|
||||
.cpu()
|
||||
.numpy()
|
||||
.clip(0, 255)
|
||||
.astype(np.uint8)
|
||||
)
|
||||
results = [x_samples[i] for i in range(img_count)]
|
||||
if (
|
||||
mode == "edit" and False
|
||||
): # replace backgound in text editing but not ideal yet
|
||||
results = [r * np_hint + edit_image * (1 - np_hint) for r in results]
|
||||
results = [r.clip(0, 255).astype(np.uint8) for r in results]
|
||||
if len(gly_pos_imgs) > 0 and show_debug:
|
||||
glyph_bs = np.stack(gly_pos_imgs, axis=2)
|
||||
glyph_img = np.sum(glyph_bs, axis=2) * 255
|
||||
glyph_img = glyph_img.clip(0, 255).astype(np.uint8)
|
||||
results += [np.repeat(glyph_img, 3, axis=2)]
|
||||
# debug_info
|
||||
if not show_debug:
|
||||
debug_info = ""
|
||||
else:
|
||||
input_prompt = prompt
|
||||
for t in texts:
|
||||
input_prompt = input_prompt.replace("*", f'"{t}"', 1)
|
||||
debug_info = f'<span style="color:black;font-size:18px">Prompt: </span>{input_prompt}<br> \
|
||||
<span style="color:black;font-size:18px">Size: </span>{w}x{h}<br> \
|
||||
<span style="color:black;font-size:18px">Image Count: </span>{img_count}<br> \
|
||||
<span style="color:black;font-size:18px">Seed: </span>{seed}<br> \
|
||||
<span style="color:black;font-size:18px">Use FP16: </span>{self.use_fp16}<br> \
|
||||
<span style="color:black;font-size:18px">Cost Time: </span>{(time.time()-tic):.2f}s'
|
||||
rst_code = 1 if str_warning else 0
|
||||
return results, rst_code, str_warning, debug_info
|
||||
|
||||
def init_model(self):
|
||||
font_path = self.font_path
|
||||
self.font = ImageFont.truetype(font_path, size=60)
|
||||
cfg_path = self.cfg_path
|
||||
ckpt_path = os.path.join(self.model_dir, "anytext_v1.1.ckpt")
|
||||
clip_path = os.path.join(self.model_dir, "clip-vit-large-patch14")
|
||||
self.model = create_model(
|
||||
cfg_path,
|
||||
device=self.device,
|
||||
cond_stage_path=clip_path,
|
||||
use_fp16=self.use_fp16,
|
||||
)
|
||||
if self.use_fp16:
|
||||
self.model = self.model.half()
|
||||
self.model.load_state_dict(
|
||||
load_state_dict(ckpt_path, location=self.device), strict=False
|
||||
)
|
||||
self.model.eval()
|
||||
self.model = self.model.to(self.device)
|
||||
self.ddim_sampler = DDIMSampler(self.model, device=self.device)
|
||||
|
||||
def modify_prompt(self, prompt):
|
||||
prompt = prompt.replace("“", '"')
|
||||
prompt = prompt.replace("”", '"')
|
||||
p = '"(.*?)"'
|
||||
strs = re.findall(p, prompt)
|
||||
if len(strs) == 0:
|
||||
strs = [" "]
|
||||
else:
|
||||
for s in strs:
|
||||
prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1)
|
||||
# if self.is_chinese(prompt):
|
||||
# if self.trans_pipe is None:
|
||||
# return None, None
|
||||
# old_prompt = prompt
|
||||
# prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1]
|
||||
# print(f"Translate: {old_prompt} --> {prompt}")
|
||||
return prompt, strs
|
||||
|
||||
# def is_chinese(self, text):
|
||||
# text = checker._clean_text(text)
|
||||
# for char in text:
|
||||
# cp = ord(char)
|
||||
# if checker._is_chinese_char(cp):
|
||||
# return True
|
||||
# return False
|
||||
|
||||
def separate_pos_imgs(self, img, sort_priority, gap=102):
|
||||
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img)
|
||||
components = []
|
||||
for label in range(1, num_labels):
|
||||
component = np.zeros_like(img)
|
||||
component[labels == label] = 255
|
||||
components.append((component, centroids[label]))
|
||||
if sort_priority == "↕":
|
||||
fir, sec = 1, 0 # top-down first
|
||||
elif sort_priority == "↔":
|
||||
fir, sec = 0, 1 # left-right first
|
||||
components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap))
|
||||
sorted_components = [c[0] for c in components]
|
||||
return sorted_components
|
||||
|
||||
def find_polygon(self, image, min_rect=False):
|
||||
contours, hierarchy = cv2.findContours(
|
||||
image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
max_contour = max(contours, key=cv2.contourArea) # get contour with max area
|
||||
if min_rect:
|
||||
# get minimum enclosing rectangle
|
||||
rect = cv2.minAreaRect(max_contour)
|
||||
poly = np.int0(cv2.boxPoints(rect))
|
||||
else:
|
||||
# get approximate polygon
|
||||
epsilon = 0.01 * cv2.arcLength(max_contour, True)
|
||||
poly = cv2.approxPolyDP(max_contour, epsilon, True)
|
||||
n, _, xy = poly.shape
|
||||
poly = poly.reshape(n, xy)
|
||||
cv2.drawContours(image, [poly], -1, 255, -1)
|
||||
return poly, image
|
||||
|
||||
def arr2tensor(self, arr, bs):
|
||||
arr = np.transpose(arr, (2, 0, 1))
|
||||
_arr = torch.from_numpy(arr.copy()).float().to(self.device)
|
||||
if self.use_fp16:
|
||||
_arr = _arr.half()
|
||||
_arr = torch.stack([_arr for _ in range(bs)], dim=0)
|
||||
return _arr
|
99
iopaint/model/anytext/anytext_sd15.yaml
Normal file
99
iopaint/model/anytext/anytext_sd15.yaml
Normal file
@ -0,0 +1,99 @@
|
||||
model:
|
||||
target: iopaint.model.anytext.cldm.cldm.ControlLDM
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "img"
|
||||
cond_stage_key: "caption"
|
||||
control_key: "hint"
|
||||
glyph_key: "glyphs"
|
||||
position_key: "positions"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: true # need be true when embedding_manager is valid
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
use_ema: False
|
||||
only_mid_control: False
|
||||
loss_alpha: 0 # perceptual loss, 0.003
|
||||
loss_beta: 0 # ctc loss
|
||||
latin_weight: 1.0 # latin text line may need smaller weigth
|
||||
with_step_weight: true
|
||||
use_vae_upsample: true
|
||||
embedding_manager_config:
|
||||
target: iopaint.model.anytext.cldm.embedding_manager.EmbeddingManager
|
||||
params:
|
||||
valid: true # v6
|
||||
emb_type: ocr # ocr, vit, conv
|
||||
glyph_channels: 1
|
||||
position_channels: 1
|
||||
add_pos: false
|
||||
placeholder_string: '*'
|
||||
|
||||
control_stage_config:
|
||||
target: iopaint.model.anytext.cldm.cldm.ControlNet
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
model_channels: 320
|
||||
glyph_channels: 1
|
||||
position_channels: 1
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
unet_config:
|
||||
target: iopaint.model.anytext.cldm.cldm.ControlledUnetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 4
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: iopaint.model.anytext.ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedderT3
|
||||
params:
|
||||
version: ./models/clip-vit-large-patch14
|
||||
use_vision: false # v6
|
630
iopaint/model/anytext/cldm/cldm.py
Normal file
630
iopaint/model/anytext/cldm/cldm.py
Normal file
@ -0,0 +1,630 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import copy
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
||||
conv_nd,
|
||||
linear,
|
||||
zero_module,
|
||||
timestep_embedding,
|
||||
)
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
|
||||
from iopaint.model.anytext.ldm.models.diffusion.ddpm import LatentDiffusion
|
||||
from iopaint.model.anytext.ldm.util import log_txt_as_img, exists, instantiate_from_config
|
||||
from iopaint.model.anytext.ldm.models.diffusion.ddim import DDIMSampler
|
||||
from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
from .recognizer import TextRecognizer, create_predictor
|
||||
|
||||
CURRENT_DIR = Path(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
|
||||
def count_parameters(model):
|
||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||
|
||||
|
||||
class ControlledUnetModel(UNetModel):
|
||||
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
||||
hs = []
|
||||
with torch.no_grad():
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
if self.use_fp16:
|
||||
t_emb = t_emb.half()
|
||||
emb = self.time_embed(t_emb)
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
h = module(h, emb, context)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb, context)
|
||||
|
||||
if control is not None:
|
||||
h += control.pop()
|
||||
|
||||
for i, module in enumerate(self.output_blocks):
|
||||
if only_mid_control or control is None:
|
||||
h = torch.cat([h, hs.pop()], dim=1)
|
||||
else:
|
||||
h = torch.cat([h, hs.pop() + control.pop()], dim=1)
|
||||
h = module(h, emb, context)
|
||||
|
||||
h = h.type(x.dtype)
|
||||
return self.out(h)
|
||||
|
||||
|
||||
class ControlNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
glyph_channels,
|
||||
position_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
use_fp16=False,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
self.dims = dims
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_fp16 = use_fp16
|
||||
self.dtype = th.float16 if use_fp16 else th.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.predict_codebook_ids = n_embed is not None
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
||||
|
||||
self.glyph_block = TimestepEmbedSequential(
|
||||
conv_nd(dims, glyph_channels, 8, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 8, 8, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 16, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 32, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 96, 96, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
)
|
||||
|
||||
self.position_block = TimestepEmbedSequential(
|
||||
conv_nd(dims, position_channels, 8, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 8, 8, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 8, 16, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 16, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 32, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 64, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
)
|
||||
|
||||
self.fuse_block = zero_module(conv_nd(dims, 256+64+4, model_channels, 3, padding=1))
|
||||
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for nr in range(self.num_res_blocks[level]):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self.zero_convs.append(self.make_zero_conv(ch))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
self.zero_convs.append(self.make_zero_conv(ch))
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
# num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self.middle_block_out = self.make_zero_conv(ch)
|
||||
self._feature_size += ch
|
||||
|
||||
def make_zero_conv(self, channels):
|
||||
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
|
||||
|
||||
def forward(self, x, hint, text_info, timesteps, context, **kwargs):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
if self.use_fp16:
|
||||
t_emb = t_emb.half()
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
# guided_hint from text_info
|
||||
B, C, H, W = x.shape
|
||||
glyphs = torch.cat(text_info['glyphs'], dim=1).sum(dim=1, keepdim=True)
|
||||
positions = torch.cat(text_info['positions'], dim=1).sum(dim=1, keepdim=True)
|
||||
enc_glyph = self.glyph_block(glyphs, emb, context)
|
||||
enc_pos = self.position_block(positions, emb, context)
|
||||
guided_hint = self.fuse_block(torch.cat([enc_glyph, enc_pos, text_info['masked_x']], dim=1))
|
||||
|
||||
outs = []
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
||||
if guided_hint is not None:
|
||||
h = module(h, emb, context)
|
||||
h += guided_hint
|
||||
guided_hint = None
|
||||
else:
|
||||
h = module(h, emb, context)
|
||||
outs.append(zero_conv(h, emb, context))
|
||||
|
||||
h = self.middle_block(h, emb, context)
|
||||
outs.append(self.middle_block_out(h, emb, context))
|
||||
|
||||
return outs
|
||||
|
||||
|
||||
class ControlLDM(LatentDiffusion):
|
||||
|
||||
def __init__(self, control_stage_config, control_key, glyph_key, position_key, only_mid_control, loss_alpha=0, loss_beta=0, with_step_weight=False, use_vae_upsample=False, latin_weight=1.0, embedding_manager_config=None, *args, **kwargs):
|
||||
self.use_fp16 = kwargs.pop('use_fp16', False)
|
||||
super().__init__(*args, **kwargs)
|
||||
self.control_model = instantiate_from_config(control_stage_config)
|
||||
self.control_key = control_key
|
||||
self.glyph_key = glyph_key
|
||||
self.position_key = position_key
|
||||
self.only_mid_control = only_mid_control
|
||||
self.control_scales = [1.0] * 13
|
||||
self.loss_alpha = loss_alpha
|
||||
self.loss_beta = loss_beta
|
||||
self.with_step_weight = with_step_weight
|
||||
self.use_vae_upsample = use_vae_upsample
|
||||
self.latin_weight = latin_weight
|
||||
|
||||
if embedding_manager_config is not None and embedding_manager_config.params.valid:
|
||||
self.embedding_manager = self.instantiate_embedding_manager(embedding_manager_config, self.cond_stage_model)
|
||||
for param in self.embedding_manager.embedding_parameters():
|
||||
param.requires_grad = True
|
||||
else:
|
||||
self.embedding_manager = None
|
||||
if self.loss_alpha > 0 or self.loss_beta > 0 or self.embedding_manager:
|
||||
if embedding_manager_config.params.emb_type == 'ocr':
|
||||
self.text_predictor = create_predictor().eval()
|
||||
args = edict()
|
||||
args.rec_image_shape = "3, 48, 320"
|
||||
args.rec_batch_num = 6
|
||||
args.rec_char_dict_path = str(CURRENT_DIR.parent / "ocr_recog" / "ppocr_keys_v1.txt")
|
||||
args.use_fp16 = self.use_fp16
|
||||
self.cn_recognizer = TextRecognizer(args, self.text_predictor)
|
||||
for param in self.text_predictor.parameters():
|
||||
param.requires_grad = False
|
||||
if self.embedding_manager:
|
||||
self.embedding_manager.recog = self.cn_recognizer
|
||||
|
||||
@torch.no_grad()
|
||||
def get_input(self, batch, k, bs=None, *args, **kwargs):
|
||||
if self.embedding_manager is None: # fill in full caption
|
||||
self.fill_caption(batch)
|
||||
x, c, mx = super().get_input(batch, self.first_stage_key, mask_k='masked_img', *args, **kwargs)
|
||||
control = batch[self.control_key] # for log_images and loss_alpha, not real control
|
||||
if bs is not None:
|
||||
control = control[:bs]
|
||||
control = control.to(self.device)
|
||||
control = einops.rearrange(control, 'b h w c -> b c h w')
|
||||
control = control.to(memory_format=torch.contiguous_format).float()
|
||||
|
||||
inv_mask = batch['inv_mask']
|
||||
if bs is not None:
|
||||
inv_mask = inv_mask[:bs]
|
||||
inv_mask = inv_mask.to(self.device)
|
||||
inv_mask = einops.rearrange(inv_mask, 'b h w c -> b c h w')
|
||||
inv_mask = inv_mask.to(memory_format=torch.contiguous_format).float()
|
||||
|
||||
glyphs = batch[self.glyph_key]
|
||||
gly_line = batch['gly_line']
|
||||
positions = batch[self.position_key]
|
||||
n_lines = batch['n_lines']
|
||||
language = batch['language']
|
||||
texts = batch['texts']
|
||||
assert len(glyphs) == len(positions)
|
||||
for i in range(len(glyphs)):
|
||||
if bs is not None:
|
||||
glyphs[i] = glyphs[i][:bs]
|
||||
gly_line[i] = gly_line[i][:bs]
|
||||
positions[i] = positions[i][:bs]
|
||||
n_lines = n_lines[:bs]
|
||||
glyphs[i] = glyphs[i].to(self.device)
|
||||
gly_line[i] = gly_line[i].to(self.device)
|
||||
positions[i] = positions[i].to(self.device)
|
||||
glyphs[i] = einops.rearrange(glyphs[i], 'b h w c -> b c h w')
|
||||
gly_line[i] = einops.rearrange(gly_line[i], 'b h w c -> b c h w')
|
||||
positions[i] = einops.rearrange(positions[i], 'b h w c -> b c h w')
|
||||
glyphs[i] = glyphs[i].to(memory_format=torch.contiguous_format).float()
|
||||
gly_line[i] = gly_line[i].to(memory_format=torch.contiguous_format).float()
|
||||
positions[i] = positions[i].to(memory_format=torch.contiguous_format).float()
|
||||
info = {}
|
||||
info['glyphs'] = glyphs
|
||||
info['positions'] = positions
|
||||
info['n_lines'] = n_lines
|
||||
info['language'] = language
|
||||
info['texts'] = texts
|
||||
info['img'] = batch['img'] # nhwc, (-1,1)
|
||||
info['masked_x'] = mx
|
||||
info['gly_line'] = gly_line
|
||||
info['inv_mask'] = inv_mask
|
||||
return x, dict(c_crossattn=[c], c_concat=[control], text_info=info)
|
||||
|
||||
def apply_model(self, x_noisy, t, cond, *args, **kwargs):
|
||||
assert isinstance(cond, dict)
|
||||
diffusion_model = self.model.diffusion_model
|
||||
_cond = torch.cat(cond['c_crossattn'], 1)
|
||||
_hint = torch.cat(cond['c_concat'], 1)
|
||||
if self.use_fp16:
|
||||
x_noisy = x_noisy.half()
|
||||
control = self.control_model(x=x_noisy, timesteps=t, context=_cond, hint=_hint, text_info=cond['text_info'])
|
||||
control = [c * scale for c, scale in zip(control, self.control_scales)]
|
||||
eps = diffusion_model(x=x_noisy, timesteps=t, context=_cond, control=control, only_mid_control=self.only_mid_control)
|
||||
|
||||
return eps
|
||||
|
||||
def instantiate_embedding_manager(self, config, embedder):
|
||||
model = instantiate_from_config(config, embedder=embedder)
|
||||
return model
|
||||
|
||||
@torch.no_grad()
|
||||
def get_unconditional_conditioning(self, N):
|
||||
return self.get_learned_conditioning(dict(c_crossattn=[[""] * N], text_info=None))
|
||||
|
||||
def get_learned_conditioning(self, c):
|
||||
if self.cond_stage_forward is None:
|
||||
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
||||
if self.embedding_manager is not None and c['text_info'] is not None:
|
||||
self.embedding_manager.encode_text(c['text_info'])
|
||||
if isinstance(c, dict):
|
||||
cond_txt = c['c_crossattn'][0]
|
||||
else:
|
||||
cond_txt = c
|
||||
if self.embedding_manager is not None:
|
||||
cond_txt = self.cond_stage_model.encode(cond_txt, embedding_manager=self.embedding_manager)
|
||||
else:
|
||||
cond_txt = self.cond_stage_model.encode(cond_txt)
|
||||
if isinstance(c, dict):
|
||||
c['c_crossattn'][0] = cond_txt
|
||||
else:
|
||||
c = cond_txt
|
||||
if isinstance(c, DiagonalGaussianDistribution):
|
||||
c = c.mode()
|
||||
else:
|
||||
c = self.cond_stage_model(c)
|
||||
else:
|
||||
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
||||
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
||||
return c
|
||||
|
||||
def fill_caption(self, batch, place_holder='*'):
|
||||
bs = len(batch['n_lines'])
|
||||
cond_list = copy.deepcopy(batch[self.cond_stage_key])
|
||||
for i in range(bs):
|
||||
n_lines = batch['n_lines'][i]
|
||||
if n_lines == 0:
|
||||
continue
|
||||
cur_cap = cond_list[i]
|
||||
for j in range(n_lines):
|
||||
r_txt = batch['texts'][j][i]
|
||||
cur_cap = cur_cap.replace(place_holder, f'"{r_txt}"', 1)
|
||||
cond_list[i] = cur_cap
|
||||
batch[self.cond_stage_key] = cond_list
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None,
|
||||
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
||||
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None,
|
||||
use_ema_scope=True,
|
||||
**kwargs):
|
||||
use_ddim = ddim_steps is not None
|
||||
|
||||
log = dict()
|
||||
z, c = self.get_input(batch, self.first_stage_key, bs=N)
|
||||
if self.cond_stage_trainable:
|
||||
with torch.no_grad():
|
||||
c = self.get_learned_conditioning(c)
|
||||
c_crossattn = c["c_crossattn"][0][:N]
|
||||
c_cat = c["c_concat"][0][:N]
|
||||
text_info = c["text_info"]
|
||||
text_info['glyphs'] = [i[:N] for i in text_info['glyphs']]
|
||||
text_info['gly_line'] = [i[:N] for i in text_info['gly_line']]
|
||||
text_info['positions'] = [i[:N] for i in text_info['positions']]
|
||||
text_info['n_lines'] = text_info['n_lines'][:N]
|
||||
text_info['masked_x'] = text_info['masked_x'][:N]
|
||||
text_info['img'] = text_info['img'][:N]
|
||||
|
||||
N = min(z.shape[0], N)
|
||||
n_row = min(z.shape[0], n_row)
|
||||
log["reconstruction"] = self.decode_first_stage(z)
|
||||
log["masked_image"] = self.decode_first_stage(text_info['masked_x'])
|
||||
log["control"] = c_cat * 2.0 - 1.0
|
||||
log["img"] = text_info['img'].permute(0, 3, 1, 2) # log source image if needed
|
||||
# get glyph
|
||||
glyph_bs = torch.stack(text_info['glyphs'])
|
||||
glyph_bs = torch.sum(glyph_bs, dim=0) * 2.0 - 1.0
|
||||
log["glyph"] = torch.nn.functional.interpolate(glyph_bs, size=(512, 512), mode='bilinear', align_corners=True,)
|
||||
# fill caption
|
||||
if not self.embedding_manager:
|
||||
self.fill_caption(batch)
|
||||
captions = batch[self.cond_stage_key]
|
||||
log["conditioning"] = log_txt_as_img((512, 512), captions, size=16)
|
||||
|
||||
if plot_diffusion_rows:
|
||||
# get diffusion row
|
||||
diffusion_row = list()
|
||||
z_start = z[:n_row]
|
||||
for t in range(self.num_timesteps):
|
||||
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
||||
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
||||
t = t.to(self.device).long()
|
||||
noise = torch.randn_like(z_start)
|
||||
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
||||
diffusion_row.append(self.decode_first_stage(z_noisy))
|
||||
|
||||
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
||||
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
||||
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
||||
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
||||
log["diffusion_row"] = diffusion_grid
|
||||
|
||||
if sample:
|
||||
# get denoise row
|
||||
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c], "text_info": text_info},
|
||||
batch_size=N, ddim=use_ddim,
|
||||
ddim_steps=ddim_steps, eta=ddim_eta)
|
||||
x_samples = self.decode_first_stage(samples)
|
||||
log["samples"] = x_samples
|
||||
if plot_denoise_rows:
|
||||
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
||||
log["denoise_row"] = denoise_grid
|
||||
|
||||
if unconditional_guidance_scale > 1.0:
|
||||
uc_cross = self.get_unconditional_conditioning(N)
|
||||
uc_cat = c_cat # torch.zeros_like(c_cat)
|
||||
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross['c_crossattn'][0]], "text_info": text_info}
|
||||
samples_cfg, tmps = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c_crossattn], "text_info": text_info},
|
||||
batch_size=N, ddim=use_ddim,
|
||||
ddim_steps=ddim_steps, eta=ddim_eta,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=uc_full,
|
||||
)
|
||||
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
||||
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
||||
pred_x0 = False # wether log pred_x0
|
||||
if pred_x0:
|
||||
for idx in range(len(tmps['pred_x0'])):
|
||||
pred_x0 = self.decode_first_stage(tmps['pred_x0'][idx])
|
||||
log[f"pred_x0_{tmps['index'][idx]}"] = pred_x0
|
||||
|
||||
return log
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
||||
ddim_sampler = DDIMSampler(self)
|
||||
b, c, h, w = cond["c_concat"][0].shape
|
||||
shape = (self.channels, h // 8, w // 8)
|
||||
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, log_every_t=5, **kwargs)
|
||||
return samples, intermediates
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.learning_rate
|
||||
params = list(self.control_model.parameters())
|
||||
if self.embedding_manager:
|
||||
params += list(self.embedding_manager.embedding_parameters())
|
||||
if not self.sd_locked:
|
||||
# params += list(self.model.diffusion_model.input_blocks.parameters())
|
||||
# params += list(self.model.diffusion_model.middle_block.parameters())
|
||||
params += list(self.model.diffusion_model.output_blocks.parameters())
|
||||
params += list(self.model.diffusion_model.out.parameters())
|
||||
if self.unlockKV:
|
||||
nCount = 0
|
||||
for name, param in self.model.diffusion_model.named_parameters():
|
||||
if 'attn2.to_k' in name or 'attn2.to_v' in name:
|
||||
params += [param]
|
||||
nCount += 1
|
||||
print(f'Cross attention is unlocked, and {nCount} Wk or Wv are added to potimizers!!!')
|
||||
|
||||
opt = torch.optim.AdamW(params, lr=lr)
|
||||
return opt
|
||||
|
||||
def low_vram_shift(self, is_diffusing):
|
||||
if is_diffusing:
|
||||
self.model = self.model.cuda()
|
||||
self.control_model = self.control_model.cuda()
|
||||
self.first_stage_model = self.first_stage_model.cpu()
|
||||
self.cond_stage_model = self.cond_stage_model.cpu()
|
||||
else:
|
||||
self.model = self.model.cpu()
|
||||
self.control_model = self.control_model.cpu()
|
||||
self.first_stage_model = self.first_stage_model.cuda()
|
||||
self.cond_stage_model = self.cond_stage_model.cuda()
|
486
iopaint/model/anytext/cldm/ddim_hacked.py
Normal file
486
iopaint/model/anytext/cldm/ddim_hacked.py
Normal file
@ -0,0 +1,486 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
||||
make_ddim_sampling_parameters,
|
||||
make_ddim_timesteps,
|
||||
noise_like,
|
||||
extract_into_tensor,
|
||||
)
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, device, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device(self.device):
|
||||
attr = attr.to(torch.device(self.device))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(
|
||||
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
||||
):
|
||||
self.ddim_timesteps = make_ddim_timesteps(
|
||||
ddim_discr_method=ddim_discretize,
|
||||
num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
||||
verbose=verbose,
|
||||
)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert (
|
||||
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
||||
), "alphas have to be defined for each timestep"
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
|
||||
|
||||
self.register_buffer("betas", to_torch(self.model.betas))
|
||||
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
||||
self.register_buffer(
|
||||
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
||||
)
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer(
|
||||
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_one_minus_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
||||
)
|
||||
self.register_buffer(
|
||||
"log_one_minus_alphas_cumprod", to_torch(np.log(1.0 - alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recip_alphas_cumprod", to_torch(np.sqrt(1.0 / alphas_cumprod.cpu()))
|
||||
)
|
||||
self.register_buffer(
|
||||
"sqrt_recipm1_alphas_cumprod",
|
||||
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
||||
)
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
||||
alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,
|
||||
verbose=verbose,
|
||||
)
|
||||
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
||||
self.register_buffer("ddim_alphas", ddim_alphas)
|
||||
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
||||
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev)
|
||||
/ (1 - self.alphas_cumprod)
|
||||
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
||||
)
|
||||
self.register_buffer(
|
||||
"ddim_sigmas_for_original_num_steps", sigmas_for_original_sampling_steps
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(
|
||||
self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.0,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
**kwargs,
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list):
|
||||
ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
if cbs != batch_size:
|
||||
print(
|
||||
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
||||
)
|
||||
|
||||
elif isinstance(conditioning, list):
|
||||
for ctmp in conditioning:
|
||||
if ctmp.shape[0] != batch_size:
|
||||
print(
|
||||
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
||||
)
|
||||
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(
|
||||
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
||||
)
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f"Data shape for DDIM sampling is {size}, eta {eta}")
|
||||
|
||||
samples, intermediates = self.ddim_sampling(
|
||||
conditioning,
|
||||
size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask,
|
||||
x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(
|
||||
self,
|
||||
cond,
|
||||
shape,
|
||||
x_T=None,
|
||||
ddim_use_original_steps=False,
|
||||
callback=None,
|
||||
timesteps=None,
|
||||
quantize_denoised=False,
|
||||
mask=None,
|
||||
x0=None,
|
||||
img_callback=None,
|
||||
log_every_t=100,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = (
|
||||
self.ddpm_num_timesteps
|
||||
if ddim_use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = (
|
||||
int(
|
||||
min(timesteps / self.ddim_timesteps.shape[0], 1)
|
||||
* self.ddim_timesteps.shape[0]
|
||||
)
|
||||
- 1
|
||||
)
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
||||
time_range = (
|
||||
reversed(range(0, timesteps))
|
||||
if ddim_use_original_steps
|
||||
else np.flip(timesteps)
|
||||
)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc="DDIM Sampler", total=total_steps)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(
|
||||
x0, ts
|
||||
) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1.0 - mask) * img
|
||||
|
||||
if ucg_schedule is not None:
|
||||
assert len(ucg_schedule) == len(time_range)
|
||||
unconditional_guidance_scale = ucg_schedule[i]
|
||||
|
||||
outs = self.p_sample_ddim(
|
||||
img,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised,
|
||||
temperature=temperature,
|
||||
noise_dropout=noise_dropout,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
)
|
||||
img, pred_x0 = outs
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates["x_inter"].append(img)
|
||||
intermediates["pred_x0"].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(
|
||||
self,
|
||||
x,
|
||||
c,
|
||||
t,
|
||||
index,
|
||||
repeat_noise=False,
|
||||
use_original_steps=False,
|
||||
quantize_denoised=False,
|
||||
temperature=1.0,
|
||||
noise_dropout=0.0,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
dynamic_threshold=None,
|
||||
):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
||||
model_output = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
model_t = self.model.apply_model(x, t, c)
|
||||
model_uncond = self.model.apply_model(x, t, unconditional_conditioning)
|
||||
model_output = model_uncond + unconditional_guidance_scale * (
|
||||
model_t - model_uncond
|
||||
)
|
||||
|
||||
if self.model.parameterization == "v":
|
||||
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
||||
else:
|
||||
e_t = model_output
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps", "not implemented"
|
||||
e_t = score_corrector.modify_score(
|
||||
self.model, e_t, x, t, c, **corrector_kwargs
|
||||
)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = (
|
||||
self.model.alphas_cumprod_prev
|
||||
if use_original_steps
|
||||
else self.ddim_alphas_prev
|
||||
)
|
||||
sqrt_one_minus_alphas = (
|
||||
self.model.sqrt_one_minus_alphas_cumprod
|
||||
if use_original_steps
|
||||
else self.ddim_sqrt_one_minus_alphas
|
||||
)
|
||||
sigmas = (
|
||||
self.model.ddim_sigmas_for_original_num_steps
|
||||
if use_original_steps
|
||||
else self.ddim_sigmas
|
||||
)
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full(
|
||||
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
||||
)
|
||||
|
||||
# current prediction for x_0
|
||||
if self.model.parameterization != "v":
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
else:
|
||||
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
||||
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
|
||||
if dynamic_threshold is not None:
|
||||
raise NotImplementedError()
|
||||
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.0:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(
|
||||
self,
|
||||
x0,
|
||||
c,
|
||||
t_enc,
|
||||
use_original_steps=False,
|
||||
return_intermediates=None,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
callback=None,
|
||||
):
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
num_reference_steps = timesteps.shape[0]
|
||||
|
||||
assert t_enc <= num_reference_steps
|
||||
num_steps = t_enc
|
||||
|
||||
if use_original_steps:
|
||||
alphas_next = self.alphas_cumprod[:num_steps]
|
||||
alphas = self.alphas_cumprod_prev[:num_steps]
|
||||
else:
|
||||
alphas_next = self.ddim_alphas[:num_steps]
|
||||
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
||||
|
||||
x_next = x0
|
||||
intermediates = []
|
||||
inter_steps = []
|
||||
for i in tqdm(range(num_steps), desc="Encoding Image"):
|
||||
t = torch.full(
|
||||
(x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long
|
||||
)
|
||||
if unconditional_guidance_scale == 1.0:
|
||||
noise_pred = self.model.apply_model(x_next, t, c)
|
||||
else:
|
||||
assert unconditional_conditioning is not None
|
||||
e_t_uncond, noise_pred = torch.chunk(
|
||||
self.model.apply_model(
|
||||
torch.cat((x_next, x_next)),
|
||||
torch.cat((t, t)),
|
||||
torch.cat((unconditional_conditioning, c)),
|
||||
),
|
||||
2,
|
||||
)
|
||||
noise_pred = e_t_uncond + unconditional_guidance_scale * (
|
||||
noise_pred - e_t_uncond
|
||||
)
|
||||
|
||||
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
||||
weighted_noise_pred = (
|
||||
alphas_next[i].sqrt()
|
||||
* ((1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt())
|
||||
* noise_pred
|
||||
)
|
||||
x_next = xt_weighted + weighted_noise_pred
|
||||
if (
|
||||
return_intermediates
|
||||
and i % (num_steps // return_intermediates) == 0
|
||||
and i < num_steps - 1
|
||||
):
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
elif return_intermediates and i >= num_steps - 2:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
if callback:
|
||||
callback(i)
|
||||
|
||||
out = {"x_encoded": x_next, "intermediate_steps": inter_steps}
|
||||
if return_intermediates:
|
||||
out.update({"intermediates": intermediates})
|
||||
return x_next, out
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (
|
||||
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
||||
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(
|
||||
self,
|
||||
x_latent,
|
||||
cond,
|
||||
t_start,
|
||||
unconditional_guidance_scale=1.0,
|
||||
unconditional_conditioning=None,
|
||||
use_original_steps=False,
|
||||
callback=None,
|
||||
):
|
||||
timesteps = (
|
||||
np.arange(self.ddpm_num_timesteps)
|
||||
if use_original_steps
|
||||
else self.ddim_timesteps
|
||||
)
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
||||
x_dec = x_latent
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full(
|
||||
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
||||
)
|
||||
x_dec, _ = self.p_sample_ddim(
|
||||
x_dec,
|
||||
cond,
|
||||
ts,
|
||||
index=index,
|
||||
use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
)
|
||||
if callback:
|
||||
callback(i)
|
||||
return x_dec
|
165
iopaint/model/anytext/cldm/embedding_manager.py
Normal file
165
iopaint/model/anytext/cldm/embedding_manager.py
Normal file
@ -0,0 +1,165 @@
|
||||
'''
|
||||
Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from functools import partial
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import conv_nd, linear
|
||||
|
||||
|
||||
def get_clip_token_for_string(tokenizer, string):
|
||||
batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"]
|
||||
assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
|
||||
return tokens[0, 1]
|
||||
|
||||
|
||||
def get_bert_token_for_string(tokenizer, string):
|
||||
token = tokenizer(string)
|
||||
assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
|
||||
token = token[0, 1]
|
||||
return token
|
||||
|
||||
|
||||
def get_clip_vision_emb(encoder, processor, img):
|
||||
_img = img.repeat(1, 3, 1, 1)*255
|
||||
inputs = processor(images=_img, return_tensors="pt")
|
||||
inputs['pixel_values'] = inputs['pixel_values'].to(img.device)
|
||||
outputs = encoder(**inputs)
|
||||
emb = outputs.image_embeds
|
||||
return emb
|
||||
|
||||
|
||||
def get_recog_emb(encoder, img_list):
|
||||
_img_list = [(img.repeat(1, 3, 1, 1)*255)[0] for img in img_list]
|
||||
encoder.predictor.eval()
|
||||
_, preds_neck = encoder.pred_imglist(_img_list, show_debug=False)
|
||||
return preds_neck
|
||||
|
||||
|
||||
def pad_H(x):
|
||||
_, _, H, W = x.shape
|
||||
p_top = (W - H) // 2
|
||||
p_bot = W - H - p_top
|
||||
return F.pad(x, (0, 0, p_top, p_bot))
|
||||
|
||||
|
||||
class EncodeNet(nn.Module):
|
||||
def __init__(self, in_channels, out_channels):
|
||||
super(EncodeNet, self).__init__()
|
||||
chan = 16
|
||||
n_layer = 4 # downsample
|
||||
|
||||
self.conv1 = conv_nd(2, in_channels, chan, 3, padding=1)
|
||||
self.conv_list = nn.ModuleList([])
|
||||
_c = chan
|
||||
for i in range(n_layer):
|
||||
self.conv_list.append(conv_nd(2, _c, _c*2, 3, padding=1, stride=2))
|
||||
_c *= 2
|
||||
self.conv2 = conv_nd(2, _c, out_channels, 3, padding=1)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.act(self.conv1(x))
|
||||
for layer in self.conv_list:
|
||||
x = self.act(layer(x))
|
||||
x = self.act(self.conv2(x))
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
return x
|
||||
|
||||
|
||||
class EmbeddingManager(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedder,
|
||||
valid=True,
|
||||
glyph_channels=20,
|
||||
position_channels=1,
|
||||
placeholder_string='*',
|
||||
add_pos=False,
|
||||
emb_type='ocr',
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
|
||||
get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
|
||||
token_dim = 768
|
||||
if hasattr(embedder, 'vit'):
|
||||
assert emb_type == 'vit'
|
||||
self.get_vision_emb = partial(get_clip_vision_emb, embedder.vit, embedder.processor)
|
||||
self.get_recog_emb = None
|
||||
else: # using LDM's BERT encoder
|
||||
get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
|
||||
token_dim = 1280
|
||||
self.token_dim = token_dim
|
||||
self.emb_type = emb_type
|
||||
|
||||
self.add_pos = add_pos
|
||||
if add_pos:
|
||||
self.position_encoder = EncodeNet(position_channels, token_dim)
|
||||
if emb_type == 'ocr':
|
||||
self.proj = linear(40*64, token_dim)
|
||||
if emb_type == 'conv':
|
||||
self.glyph_encoder = EncodeNet(glyph_channels, token_dim)
|
||||
|
||||
self.placeholder_token = get_token_for_string(placeholder_string)
|
||||
|
||||
def encode_text(self, text_info):
|
||||
if self.get_recog_emb is None and self.emb_type == 'ocr':
|
||||
self.get_recog_emb = partial(get_recog_emb, self.recog)
|
||||
|
||||
gline_list = []
|
||||
pos_list = []
|
||||
for i in range(len(text_info['n_lines'])): # sample index in a batch
|
||||
n_lines = text_info['n_lines'][i]
|
||||
for j in range(n_lines): # line
|
||||
gline_list += [text_info['gly_line'][j][i:i+1]]
|
||||
if self.add_pos:
|
||||
pos_list += [text_info['positions'][j][i:i+1]]
|
||||
|
||||
if len(gline_list) > 0:
|
||||
if self.emb_type == 'ocr':
|
||||
recog_emb = self.get_recog_emb(gline_list)
|
||||
enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1))
|
||||
elif self.emb_type == 'vit':
|
||||
enc_glyph = self.get_vision_emb(pad_H(torch.cat(gline_list, dim=0)))
|
||||
elif self.emb_type == 'conv':
|
||||
enc_glyph = self.glyph_encoder(pad_H(torch.cat(gline_list, dim=0)))
|
||||
if self.add_pos:
|
||||
enc_pos = self.position_encoder(torch.cat(gline_list, dim=0))
|
||||
enc_glyph = enc_glyph+enc_pos
|
||||
|
||||
self.text_embs_all = []
|
||||
n_idx = 0
|
||||
for i in range(len(text_info['n_lines'])): # sample index in a batch
|
||||
n_lines = text_info['n_lines'][i]
|
||||
text_embs = []
|
||||
for j in range(n_lines): # line
|
||||
text_embs += [enc_glyph[n_idx:n_idx+1]]
|
||||
n_idx += 1
|
||||
self.text_embs_all += [text_embs]
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tokenized_text,
|
||||
embedded_text,
|
||||
):
|
||||
b, device = tokenized_text.shape[0], tokenized_text.device
|
||||
for i in range(b):
|
||||
idx = tokenized_text[i] == self.placeholder_token.to(device)
|
||||
if sum(idx) > 0:
|
||||
if i >= len(self.text_embs_all):
|
||||
print('truncation for log images...')
|
||||
break
|
||||
text_emb = torch.cat(self.text_embs_all[i], dim=0)
|
||||
if sum(idx) != len(text_emb):
|
||||
print('truncation for long caption...')
|
||||
embedded_text[i][idx] = text_emb[:sum(idx)]
|
||||
return embedded_text
|
||||
|
||||
def embedding_parameters(self):
|
||||
return self.parameters()
|
111
iopaint/model/anytext/cldm/hack.py
Normal file
111
iopaint/model/anytext/cldm/hack.py
Normal file
@ -0,0 +1,111 @@
|
||||
import torch
|
||||
import einops
|
||||
|
||||
import iopaint.model.anytext.ldm.modules.encoders.modules
|
||||
import iopaint.model.anytext.ldm.modules.attention
|
||||
|
||||
from transformers import logging
|
||||
from iopaint.model.anytext.ldm.modules.attention import default
|
||||
|
||||
|
||||
def disable_verbosity():
|
||||
logging.set_verbosity_error()
|
||||
print('logging improved.')
|
||||
return
|
||||
|
||||
|
||||
def enable_sliced_attention():
|
||||
iopaint.model.anytext.ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
|
||||
print('Enabled sliced_attention.')
|
||||
return
|
||||
|
||||
|
||||
def hack_everything(clip_skip=0):
|
||||
disable_verbosity()
|
||||
iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
|
||||
iopaint.model.anytext.ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
|
||||
print('Enabled clip hacks.')
|
||||
return
|
||||
|
||||
|
||||
# Written by Lvmin
|
||||
def _hacked_clip_forward(self, text):
|
||||
PAD = self.tokenizer.pad_token_id
|
||||
EOS = self.tokenizer.eos_token_id
|
||||
BOS = self.tokenizer.bos_token_id
|
||||
|
||||
def tokenize(t):
|
||||
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
|
||||
|
||||
def transformer_encode(t):
|
||||
if self.clip_skip > 1:
|
||||
rt = self.transformer(input_ids=t, output_hidden_states=True)
|
||||
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
|
||||
else:
|
||||
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
|
||||
|
||||
def split(x):
|
||||
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
|
||||
|
||||
def pad(x, p, i):
|
||||
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
|
||||
|
||||
raw_tokens_list = tokenize(text)
|
||||
tokens_list = []
|
||||
|
||||
for raw_tokens in raw_tokens_list:
|
||||
raw_tokens_123 = split(raw_tokens)
|
||||
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
|
||||
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
|
||||
tokens_list.append(raw_tokens_123)
|
||||
|
||||
tokens_list = torch.IntTensor(tokens_list).to(self.device)
|
||||
|
||||
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
|
||||
y = transformer_encode(feed)
|
||||
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
|
||||
|
||||
return z
|
||||
|
||||
|
||||
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
|
||||
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
del context, x
|
||||
|
||||
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
||||
|
||||
limit = k.shape[0]
|
||||
att_step = 1
|
||||
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
|
||||
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
|
||||
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
|
||||
|
||||
q_chunks.reverse()
|
||||
k_chunks.reverse()
|
||||
v_chunks.reverse()
|
||||
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
||||
del k, q, v
|
||||
for i in range(0, limit, att_step):
|
||||
q_buffer = q_chunks.pop()
|
||||
k_buffer = k_chunks.pop()
|
||||
v_buffer = v_chunks.pop()
|
||||
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
|
||||
|
||||
del k_buffer, q_buffer
|
||||
# attention, what we cannot get enough of, by chunks
|
||||
|
||||
sim_buffer = sim_buffer.softmax(dim=-1)
|
||||
|
||||
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
|
||||
del v_buffer
|
||||
sim[i:i + att_step, :, :] = sim_buffer
|
||||
|
||||
del sim_buffer
|
||||
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
|
||||
return self.to_out(sim)
|
40
iopaint/model/anytext/cldm/model.py
Normal file
40
iopaint/model/anytext/cldm/model.py
Normal file
@ -0,0 +1,40 @@
|
||||
import os
|
||||
import torch
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from iopaint.model.anytext.ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
def get_state_dict(d):
|
||||
return d.get("state_dict", d)
|
||||
|
||||
|
||||
def load_state_dict(ckpt_path, location="cpu"):
|
||||
_, extension = os.path.splitext(ckpt_path)
|
||||
if extension.lower() == ".safetensors":
|
||||
import safetensors.torch
|
||||
|
||||
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
||||
else:
|
||||
state_dict = get_state_dict(
|
||||
torch.load(ckpt_path, map_location=torch.device(location))
|
||||
)
|
||||
state_dict = get_state_dict(state_dict)
|
||||
print(f"Loaded state_dict from [{ckpt_path}]")
|
||||
return state_dict
|
||||
|
||||
|
||||
def create_model(config_path, device, cond_stage_path=None, use_fp16=False):
|
||||
config = OmegaConf.load(config_path)
|
||||
if cond_stage_path:
|
||||
config.model.params.cond_stage_config.params.version = (
|
||||
cond_stage_path # use pre-downloaded ckpts, in case blocked
|
||||
)
|
||||
config.model.params.cond_stage_config.params.device = device
|
||||
if use_fp16:
|
||||
config.model.params.use_fp16 = True
|
||||
config.model.params.control_stage_config.params.use_fp16 = True
|
||||
config.model.params.unet_config.params.use_fp16 = True
|
||||
model = instantiate_from_config(config.model).cpu()
|
||||
print(f"Loaded model config from [{config_path}]")
|
||||
return model
|
300
iopaint/model/anytext/cldm/recognizer.py
Executable file
300
iopaint/model/anytext/cldm/recognizer.py
Executable file
@ -0,0 +1,300 @@
|
||||
"""
|
||||
Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
"""
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import traceback
|
||||
from easydict import EasyDict as edict
|
||||
import time
|
||||
from iopaint.model.anytext.ocr_recog.RecModel import RecModel
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def min_bounding_rect(img):
|
||||
ret, thresh = cv2.threshold(img, 127, 255, 0)
|
||||
contours, hierarchy = cv2.findContours(
|
||||
thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
if len(contours) == 0:
|
||||
print("Bad contours, using fake bbox...")
|
||||
return np.array([[0, 0], [100, 0], [100, 100], [0, 100]])
|
||||
max_contour = max(contours, key=cv2.contourArea)
|
||||
rect = cv2.minAreaRect(max_contour)
|
||||
box = cv2.boxPoints(rect)
|
||||
box = np.int0(box)
|
||||
# sort
|
||||
x_sorted = sorted(box, key=lambda x: x[0])
|
||||
left = x_sorted[:2]
|
||||
right = x_sorted[2:]
|
||||
left = sorted(left, key=lambda x: x[1])
|
||||
(tl, bl) = left
|
||||
right = sorted(right, key=lambda x: x[1])
|
||||
(tr, br) = right
|
||||
if tl[1] > bl[1]:
|
||||
(tl, bl) = (bl, tl)
|
||||
if tr[1] > br[1]:
|
||||
(tr, br) = (br, tr)
|
||||
return np.array([tl, tr, br, bl])
|
||||
|
||||
|
||||
def create_predictor(model_dir=None, model_lang="ch", is_onnx=False):
|
||||
model_file_path = model_dir
|
||||
if model_file_path is not None and not os.path.exists(model_file_path):
|
||||
raise ValueError("not find model file path {}".format(model_file_path))
|
||||
|
||||
if is_onnx:
|
||||
import onnxruntime as ort
|
||||
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path, providers=["CPUExecutionProvider"]
|
||||
) # 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
|
||||
return sess
|
||||
else:
|
||||
if model_lang == "ch":
|
||||
n_class = 6625
|
||||
elif model_lang == "en":
|
||||
n_class = 97
|
||||
else:
|
||||
raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}")
|
||||
rec_config = edict(
|
||||
in_channels=3,
|
||||
backbone=edict(
|
||||
type="MobileNetV1Enhance",
|
||||
scale=0.5,
|
||||
last_conv_stride=[1, 2],
|
||||
last_pool_type="avg",
|
||||
),
|
||||
neck=edict(
|
||||
type="SequenceEncoder",
|
||||
encoder_type="svtr",
|
||||
dims=64,
|
||||
depth=2,
|
||||
hidden_dims=120,
|
||||
use_guide=True,
|
||||
),
|
||||
head=edict(
|
||||
type="CTCHead",
|
||||
fc_decay=0.00001,
|
||||
out_channels=n_class,
|
||||
return_feats=True,
|
||||
),
|
||||
)
|
||||
|
||||
rec_model = RecModel(rec_config)
|
||||
if model_file_path is not None:
|
||||
rec_model.load_state_dict(torch.load(model_file_path, map_location="cpu"))
|
||||
rec_model.eval()
|
||||
return rec_model.eval()
|
||||
|
||||
|
||||
def _check_image_file(path):
|
||||
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff"}
|
||||
return any([path.lower().endswith(e) for e in img_end])
|
||||
|
||||
|
||||
def get_image_file_list(img_file):
|
||||
imgs_lists = []
|
||||
if img_file is None or not os.path.exists(img_file):
|
||||
raise Exception("not found any img file in {}".format(img_file))
|
||||
if os.path.isfile(img_file) and _check_image_file(img_file):
|
||||
imgs_lists.append(img_file)
|
||||
elif os.path.isdir(img_file):
|
||||
for single_file in os.listdir(img_file):
|
||||
file_path = os.path.join(img_file, single_file)
|
||||
if os.path.isfile(file_path) and _check_image_file(file_path):
|
||||
imgs_lists.append(file_path)
|
||||
if len(imgs_lists) == 0:
|
||||
raise Exception("not found any img file in {}".format(img_file))
|
||||
imgs_lists = sorted(imgs_lists)
|
||||
return imgs_lists
|
||||
|
||||
|
||||
class TextRecognizer(object):
|
||||
def __init__(self, args, predictor):
|
||||
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
||||
self.rec_batch_num = args.rec_batch_num
|
||||
self.predictor = predictor
|
||||
self.chars = self.get_char_dict(args.rec_char_dict_path)
|
||||
self.char2id = {x: i for i, x in enumerate(self.chars)}
|
||||
self.is_onnx = not isinstance(self.predictor, torch.nn.Module)
|
||||
self.use_fp16 = args.use_fp16
|
||||
|
||||
# img: CHW
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
imgC, imgH, imgW = self.rec_image_shape
|
||||
assert imgC == img.shape[0]
|
||||
imgW = int((imgH * max_wh_ratio))
|
||||
|
||||
h, w = img.shape[1:]
|
||||
ratio = w / float(h)
|
||||
if math.ceil(imgH * ratio) > imgW:
|
||||
resized_w = imgW
|
||||
else:
|
||||
resized_w = int(math.ceil(imgH * ratio))
|
||||
resized_image = torch.nn.functional.interpolate(
|
||||
img.unsqueeze(0),
|
||||
size=(imgH, resized_w),
|
||||
mode="bilinear",
|
||||
align_corners=True,
|
||||
)
|
||||
resized_image /= 255.0
|
||||
resized_image -= 0.5
|
||||
resized_image /= 0.5
|
||||
padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device)
|
||||
padding_im[:, :, 0:resized_w] = resized_image[0]
|
||||
return padding_im
|
||||
|
||||
# img_list: list of tensors with shape chw 0-255
|
||||
def pred_imglist(self, img_list, show_debug=False, is_ori=False):
|
||||
img_num = len(img_list)
|
||||
assert img_num > 0
|
||||
# Calculate the aspect ratio of all text bars
|
||||
width_list = []
|
||||
for img in img_list:
|
||||
width_list.append(img.shape[2] / float(img.shape[1]))
|
||||
# Sorting can speed up the recognition process
|
||||
indices = torch.from_numpy(np.argsort(np.array(width_list)))
|
||||
batch_num = self.rec_batch_num
|
||||
preds_all = [None] * img_num
|
||||
preds_neck_all = [None] * img_num
|
||||
for beg_img_no in range(0, img_num, batch_num):
|
||||
end_img_no = min(img_num, beg_img_no + batch_num)
|
||||
norm_img_batch = []
|
||||
|
||||
imgC, imgH, imgW = self.rec_image_shape[:3]
|
||||
max_wh_ratio = imgW / imgH
|
||||
for ino in range(beg_img_no, end_img_no):
|
||||
h, w = img_list[indices[ino]].shape[1:]
|
||||
if h > w * 1.2:
|
||||
img = img_list[indices[ino]]
|
||||
img = torch.transpose(img, 1, 2).flip(dims=[1])
|
||||
img_list[indices[ino]] = img
|
||||
h, w = img.shape[1:]
|
||||
# wh_ratio = w * 1.0 / h
|
||||
# max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio
|
||||
for ino in range(beg_img_no, end_img_no):
|
||||
norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
|
||||
if self.use_fp16:
|
||||
norm_img = norm_img.half()
|
||||
norm_img = norm_img.unsqueeze(0)
|
||||
norm_img_batch.append(norm_img)
|
||||
norm_img_batch = torch.cat(norm_img_batch, dim=0)
|
||||
if show_debug:
|
||||
for i in range(len(norm_img_batch)):
|
||||
_img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy()
|
||||
_img = (_img + 0.5) * 255
|
||||
_img = _img[:, :, ::-1]
|
||||
file_name = f"{indices[beg_img_no + i]}"
|
||||
file_name = file_name + "_ori" if is_ori else file_name
|
||||
cv2.imwrite(file_name + ".jpg", _img)
|
||||
if self.is_onnx:
|
||||
input_dict = {}
|
||||
input_dict[self.predictor.get_inputs()[0].name] = (
|
||||
norm_img_batch.detach().cpu().numpy()
|
||||
)
|
||||
outputs = self.predictor.run(None, input_dict)
|
||||
preds = {}
|
||||
preds["ctc"] = torch.from_numpy(outputs[0])
|
||||
preds["ctc_neck"] = [torch.zeros(1)] * img_num
|
||||
else:
|
||||
preds = self.predictor(norm_img_batch)
|
||||
for rno in range(preds["ctc"].shape[0]):
|
||||
preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno]
|
||||
preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno]
|
||||
|
||||
return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0)
|
||||
|
||||
def get_char_dict(self, character_dict_path):
|
||||
character_str = []
|
||||
with open(character_dict_path, "rb") as fin:
|
||||
lines = fin.readlines()
|
||||
for line in lines:
|
||||
line = line.decode("utf-8").strip("\n").strip("\r\n")
|
||||
character_str.append(line)
|
||||
dict_character = list(character_str)
|
||||
dict_character = ["sos"] + dict_character + [" "] # eos is space
|
||||
return dict_character
|
||||
|
||||
def get_text(self, order):
|
||||
char_list = [self.chars[text_id] for text_id in order]
|
||||
return "".join(char_list)
|
||||
|
||||
def decode(self, mat):
|
||||
text_index = mat.detach().cpu().numpy().argmax(axis=1)
|
||||
ignored_tokens = [0]
|
||||
selection = np.ones(len(text_index), dtype=bool)
|
||||
selection[1:] = text_index[1:] != text_index[:-1]
|
||||
for ignored_token in ignored_tokens:
|
||||
selection &= text_index != ignored_token
|
||||
return text_index[selection], np.where(selection)[0]
|
||||
|
||||
def get_ctcloss(self, preds, gt_text, weight):
|
||||
if not isinstance(weight, torch.Tensor):
|
||||
weight = torch.tensor(weight).to(preds.device)
|
||||
ctc_loss = torch.nn.CTCLoss(reduction="none")
|
||||
log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC
|
||||
targets = []
|
||||
target_lengths = []
|
||||
for t in gt_text:
|
||||
targets += [self.char2id.get(i, len(self.chars) - 1) for i in t]
|
||||
target_lengths += [len(t)]
|
||||
targets = torch.tensor(targets).to(preds.device)
|
||||
target_lengths = torch.tensor(target_lengths).to(preds.device)
|
||||
input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(
|
||||
preds.device
|
||||
)
|
||||
loss = ctc_loss(log_probs, targets, input_lengths, target_lengths)
|
||||
loss = loss / input_lengths * weight
|
||||
return loss
|
||||
|
||||
|
||||
def main():
|
||||
rec_model_dir = "./ocr_weights/ppv3_rec.pth"
|
||||
predictor = create_predictor(rec_model_dir)
|
||||
args = edict()
|
||||
args.rec_image_shape = "3, 48, 320"
|
||||
args.rec_char_dict_path = "./ocr_weights/ppocr_keys_v1.txt"
|
||||
args.rec_batch_num = 6
|
||||
text_recognizer = TextRecognizer(args, predictor)
|
||||
image_dir = "./test_imgs_cn"
|
||||
gt_text = ["韩国小馆"] * 14
|
||||
|
||||
image_file_list = get_image_file_list(image_dir)
|
||||
valid_image_file_list = []
|
||||
img_list = []
|
||||
|
||||
for image_file in image_file_list:
|
||||
img = cv2.imread(image_file)
|
||||
if img is None:
|
||||
print("error in loading image:{}".format(image_file))
|
||||
continue
|
||||
valid_image_file_list.append(image_file)
|
||||
img_list.append(torch.from_numpy(img).permute(2, 0, 1).float())
|
||||
try:
|
||||
tic = time.time()
|
||||
times = []
|
||||
for i in range(10):
|
||||
preds, _ = text_recognizer.pred_imglist(img_list) # get text
|
||||
preds_all = preds.softmax(dim=2)
|
||||
times += [(time.time() - tic) * 1000.0]
|
||||
tic = time.time()
|
||||
print(times)
|
||||
print(np.mean(times[1:]) / len(preds_all))
|
||||
weight = np.ones(len(gt_text))
|
||||
loss = text_recognizer.get_ctcloss(preds, gt_text, weight)
|
||||
for i in range(len(valid_image_file_list)):
|
||||
pred = preds_all[i]
|
||||
order, idx = text_recognizer.decode(pred)
|
||||
text = text_recognizer.get_text(order)
|
||||
print(
|
||||
f'{valid_image_file_list[i]}: pred/gt="{text}"/"{gt_text[i]}", loss={loss[i]:.2f}'
|
||||
)
|
||||
except Exception as E:
|
||||
print(traceback.format_exc(), E)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
218
iopaint/model/anytext/ldm/models/autoencoder.py
Normal file
218
iopaint/model/anytext/ldm/models/autoencoder.py
Normal file
@ -0,0 +1,218 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from contextlib import contextmanager
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.model import Encoder, Decoder
|
||||
from iopaint.model.anytext.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
|
||||
from iopaint.model.anytext.ldm.util import instantiate_from_config
|
||||
from iopaint.model.anytext.ldm.modules.ema import LitEma
|
||||
|
||||
|
||||
class AutoencoderKL(torch.nn.Module):
|
||||
def __init__(self,
|
||||
ddconfig,
|
||||
lossconfig,
|
||||
embed_dim,
|
||||
ckpt_path=None,
|
||||
ignore_keys=[],
|
||||
image_key="image",
|
||||
colorize_nlabels=None,
|
||||
monitor=None,
|
||||
ema_decay=None,
|
||||
learn_logvar=False
|
||||
):
|
||||
super().__init__()
|
||||
self.learn_logvar = learn_logvar
|
||||
self.image_key = image_key
|
||||
self.encoder = Encoder(**ddconfig)
|
||||
self.decoder = Decoder(**ddconfig)
|
||||
self.loss = instantiate_from_config(lossconfig)
|
||||
assert ddconfig["double_z"]
|
||||
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
||||
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
||||
self.embed_dim = embed_dim
|
||||
if colorize_nlabels is not None:
|
||||
assert type(colorize_nlabels)==int
|
||||
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
||||
if monitor is not None:
|
||||
self.monitor = monitor
|
||||
|
||||
self.use_ema = ema_decay is not None
|
||||
if self.use_ema:
|
||||
self.ema_decay = ema_decay
|
||||
assert 0. < ema_decay < 1.
|
||||
self.model_ema = LitEma(self, decay=ema_decay)
|
||||
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
||||
|
||||
if ckpt_path is not None:
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list()):
|
||||
sd = torch.load(path, map_location="cpu")["state_dict"]
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del sd[k]
|
||||
self.load_state_dict(sd, strict=False)
|
||||
print(f"Restored from {path}")
|
||||
|
||||
@contextmanager
|
||||
def ema_scope(self, context=None):
|
||||
if self.use_ema:
|
||||
self.model_ema.store(self.parameters())
|
||||
self.model_ema.copy_to(self)
|
||||
if context is not None:
|
||||
print(f"{context}: Switched to EMA weights")
|
||||
try:
|
||||
yield None
|
||||
finally:
|
||||
if self.use_ema:
|
||||
self.model_ema.restore(self.parameters())
|
||||
if context is not None:
|
||||
print(f"{context}: Restored training weights")
|
||||
|
||||
def on_train_batch_end(self, *args, **kwargs):
|
||||
if self.use_ema:
|
||||
self.model_ema(self)
|
||||
|
||||
def encode(self, x):
|
||||
h = self.encoder(x)
|
||||
moments = self.quant_conv(h)
|
||||
posterior = DiagonalGaussianDistribution(moments)
|
||||
return posterior
|
||||
|
||||
def decode(self, z):
|
||||
z = self.post_quant_conv(z)
|
||||
dec = self.decoder(z)
|
||||
return dec
|
||||
|
||||
def forward(self, input, sample_posterior=True):
|
||||
posterior = self.encode(input)
|
||||
if sample_posterior:
|
||||
z = posterior.sample()
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z)
|
||||
return dec, posterior
|
||||
|
||||
def get_input(self, batch, k):
|
||||
x = batch[k]
|
||||
if len(x.shape) == 3:
|
||||
x = x[..., None]
|
||||
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx, optimizer_idx):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
|
||||
if optimizer_idx == 0:
|
||||
# train encoder+decoder+logvar
|
||||
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
return aeloss
|
||||
|
||||
if optimizer_idx == 1:
|
||||
# train the discriminator
|
||||
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="train")
|
||||
|
||||
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
||||
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
return discloss
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
log_dict = self._validation_step(batch, batch_idx)
|
||||
with self.ema_scope():
|
||||
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
|
||||
return log_dict
|
||||
|
||||
def _validation_step(self, batch, batch_idx, postfix=""):
|
||||
inputs = self.get_input(batch, self.image_key)
|
||||
reconstructions, posterior = self(inputs)
|
||||
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="val"+postfix)
|
||||
|
||||
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
||||
last_layer=self.get_last_layer(), split="val"+postfix)
|
||||
|
||||
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
|
||||
self.log_dict(log_dict_ae)
|
||||
self.log_dict(log_dict_disc)
|
||||
return self.log_dict
|
||||
|
||||
def configure_optimizers(self):
|
||||
lr = self.learning_rate
|
||||
ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
|
||||
self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
|
||||
if self.learn_logvar:
|
||||
print(f"{self.__class__.__name__}: Learning logvar")
|
||||
ae_params_list.append(self.loss.logvar)
|
||||
opt_ae = torch.optim.Adam(ae_params_list,
|
||||
lr=lr, betas=(0.5, 0.9))
|
||||
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
||||
lr=lr, betas=(0.5, 0.9))
|
||||
return [opt_ae, opt_disc], []
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.decoder.conv_out.weight
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
|
||||
log = dict()
|
||||
x = self.get_input(batch, self.image_key)
|
||||
x = x.to(self.device)
|
||||
if not only_inputs:
|
||||
xrec, posterior = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec.shape[1] > 3
|
||||
x = self.to_rgb(x)
|
||||
xrec = self.to_rgb(xrec)
|
||||
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
||||
log["reconstructions"] = xrec
|
||||
if log_ema or self.use_ema:
|
||||
with self.ema_scope():
|
||||
xrec_ema, posterior_ema = self(x)
|
||||
if x.shape[1] > 3:
|
||||
# colorize with random projection
|
||||
assert xrec_ema.shape[1] > 3
|
||||
xrec_ema = self.to_rgb(xrec_ema)
|
||||
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
|
||||
log["reconstructions_ema"] = xrec_ema
|
||||
log["inputs"] = x
|
||||
return log
|
||||
|
||||
def to_rgb(self, x):
|
||||
assert self.image_key == "segmentation"
|
||||
if not hasattr(self, "colorize"):
|
||||
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
||||
x = F.conv2d(x, weight=self.colorize)
|
||||
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
||||
return x
|
||||
|
||||
|
||||
class IdentityFirstStage(torch.nn.Module):
|
||||
def __init__(self, *args, vq_interface=False, **kwargs):
|
||||
self.vq_interface = vq_interface
|
||||
super().__init__()
|
||||
|
||||
def encode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def decode(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
||||
def quantize(self, x, *args, **kwargs):
|
||||
if self.vq_interface:
|
||||
return x, None, [None, None, None]
|
||||
return x
|
||||
|
||||
def forward(self, x, *args, **kwargs):
|
||||
return x
|
||||
|
354
iopaint/model/anytext/ldm/models/diffusion/ddim.py
Normal file
354
iopaint/model/anytext/ldm/models/diffusion/ddim.py
Normal file
@ -0,0 +1,354 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
||||
|
||||
|
||||
class DDIMSampler(object):
|
||||
def __init__(self, model, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
ucg_schedule=None,
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||
while isinstance(ctmp, list): ctmp = ctmp[0]
|
||||
cbs = ctmp.shape[0]
|
||||
# cbs = len(ctmp[0])
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
|
||||
elif isinstance(conditioning, list):
|
||||
for ctmp in conditioning:
|
||||
if ctmp.shape[0] != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
||||
ucg_schedule=None):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img], "index": [10000]}
|
||||
time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
if ucg_schedule is not None:
|
||||
assert len(ucg_schedule) == len(time_range)
|
||||
unconditional_guidance_scale = ucg_schedule[i]
|
||||
|
||||
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0 = outs
|
||||
if callback:
|
||||
callback(i)
|
||||
if img_callback:
|
||||
img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
intermediates['index'].append(index)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
model_output = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
if isinstance(c, dict):
|
||||
assert isinstance(unconditional_conditioning, dict)
|
||||
c_in = dict()
|
||||
for k in c:
|
||||
if isinstance(c[k], list):
|
||||
c_in[k] = [torch.cat([
|
||||
unconditional_conditioning[k][i],
|
||||
c[k][i]]) for i in range(len(c[k]))]
|
||||
elif isinstance(c[k], dict):
|
||||
c_in[k] = dict()
|
||||
for key in c[k]:
|
||||
if isinstance(c[k][key], list):
|
||||
if not isinstance(c[k][key][0], torch.Tensor):
|
||||
continue
|
||||
c_in[k][key] = [torch.cat([
|
||||
unconditional_conditioning[k][key][i],
|
||||
c[k][key][i]]) for i in range(len(c[k][key]))]
|
||||
else:
|
||||
c_in[k][key] = torch.cat([
|
||||
unconditional_conditioning[k][key],
|
||||
c[k][key]])
|
||||
|
||||
else:
|
||||
c_in[k] = torch.cat([
|
||||
unconditional_conditioning[k],
|
||||
c[k]])
|
||||
elif isinstance(c, list):
|
||||
c_in = list()
|
||||
assert isinstance(unconditional_conditioning, list)
|
||||
for i in range(len(c)):
|
||||
c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
|
||||
else:
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
|
||||
|
||||
if self.model.parameterization == "v":
|
||||
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
|
||||
else:
|
||||
e_t = model_output
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps", 'not implemented'
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
if self.model.parameterization != "v":
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
else:
|
||||
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
|
||||
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
|
||||
if dynamic_threshold is not None:
|
||||
raise NotImplementedError()
|
||||
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
@torch.no_grad()
|
||||
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
||||
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
|
||||
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
||||
|
||||
assert t_enc <= num_reference_steps
|
||||
num_steps = t_enc
|
||||
|
||||
if use_original_steps:
|
||||
alphas_next = self.alphas_cumprod[:num_steps]
|
||||
alphas = self.alphas_cumprod_prev[:num_steps]
|
||||
else:
|
||||
alphas_next = self.ddim_alphas[:num_steps]
|
||||
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
||||
|
||||
x_next = x0
|
||||
intermediates = []
|
||||
inter_steps = []
|
||||
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
||||
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
||||
if unconditional_guidance_scale == 1.:
|
||||
noise_pred = self.model.apply_model(x_next, t, c)
|
||||
else:
|
||||
assert unconditional_conditioning is not None
|
||||
e_t_uncond, noise_pred = torch.chunk(
|
||||
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
||||
torch.cat((unconditional_conditioning, c))), 2)
|
||||
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
||||
|
||||
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
||||
weighted_noise_pred = alphas_next[i].sqrt() * (
|
||||
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
||||
x_next = xt_weighted + weighted_noise_pred
|
||||
if return_intermediates and i % (
|
||||
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
elif return_intermediates and i >= num_steps - 2:
|
||||
intermediates.append(x_next)
|
||||
inter_steps.append(i)
|
||||
if callback: callback(i)
|
||||
|
||||
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
||||
if return_intermediates:
|
||||
out.update({'intermediates': intermediates})
|
||||
return x_next, out
|
||||
|
||||
@torch.no_grad()
|
||||
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||
# fast, but does not allow for exact reconstruction
|
||||
# t serves as an index to gather the correct alphas
|
||||
if use_original_steps:
|
||||
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||
else:
|
||||
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||
|
||||
if noise is None:
|
||||
noise = torch.randn_like(x0)
|
||||
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
||||
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
||||
use_original_steps=False, callback=None):
|
||||
|
||||
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
||||
timesteps = timesteps[:t_start]
|
||||
|
||||
time_range = np.flip(timesteps)
|
||||
total_steps = timesteps.shape[0]
|
||||
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||
x_dec = x_latent
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
||||
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning)
|
||||
if callback: callback(i)
|
||||
return x_dec
|
2380
iopaint/model/anytext/ldm/models/diffusion/ddpm.py
Normal file
2380
iopaint/model/anytext/ldm/models/diffusion/ddpm.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1 @@
|
||||
from .sampler import DPMSolverSampler
|
1154
iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py
Normal file
1154
iopaint/model/anytext/ldm/models/diffusion/dpm_solver/dpm_solver.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,87 @@
|
||||
"""SAMPLING ONLY."""
|
||||
import torch
|
||||
|
||||
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
||||
|
||||
|
||||
MODEL_TYPES = {
|
||||
"eps": "noise",
|
||||
"v": "v"
|
||||
}
|
||||
|
||||
|
||||
class DPMSolverSampler(object):
|
||||
def __init__(self, model, **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
||||
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
|
||||
print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
||||
|
||||
device = self.model.betas.device
|
||||
if x_T is None:
|
||||
img = torch.randn(size, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
||||
|
||||
model_fn = model_wrapper(
|
||||
lambda x, t, c: self.model.apply_model(x, t, c),
|
||||
ns,
|
||||
model_type=MODEL_TYPES[self.model.parameterization],
|
||||
guidance_type="classifier-free",
|
||||
condition=conditioning,
|
||||
unconditional_condition=unconditional_conditioning,
|
||||
guidance_scale=unconditional_guidance_scale,
|
||||
)
|
||||
|
||||
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
||||
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
||||
|
||||
return x.to(device), None
|
244
iopaint/model/anytext/ldm/models/diffusion/plms.py
Normal file
244
iopaint/model/anytext/ldm/models/diffusion/plms.py
Normal file
@ -0,0 +1,244 @@
|
||||
"""SAMPLING ONLY."""
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from functools import partial
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
||||
from iopaint.model.anytext.ldm.models.diffusion.sampling_util import norm_thresholding
|
||||
|
||||
|
||||
class PLMSSampler(object):
|
||||
def __init__(self, model, schedule="linear", **kwargs):
|
||||
super().__init__()
|
||||
self.model = model
|
||||
self.ddpm_num_timesteps = model.num_timesteps
|
||||
self.schedule = schedule
|
||||
|
||||
def register_buffer(self, name, attr):
|
||||
if type(attr) == torch.Tensor:
|
||||
if attr.device != torch.device("cuda"):
|
||||
attr = attr.to(torch.device("cuda"))
|
||||
setattr(self, name, attr)
|
||||
|
||||
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
||||
if ddim_eta != 0:
|
||||
raise ValueError('ddim_eta must be 0 for PLMS')
|
||||
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
||||
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
||||
alphas_cumprod = self.model.alphas_cumprod
|
||||
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
||||
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
||||
|
||||
self.register_buffer('betas', to_torch(self.model.betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
||||
|
||||
# ddim sampling parameters
|
||||
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
||||
ddim_timesteps=self.ddim_timesteps,
|
||||
eta=ddim_eta,verbose=verbose)
|
||||
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
||||
self.register_buffer('ddim_alphas', ddim_alphas)
|
||||
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
||||
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
||||
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
||||
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
||||
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
||||
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
||||
|
||||
@torch.no_grad()
|
||||
def sample(self,
|
||||
S,
|
||||
batch_size,
|
||||
shape,
|
||||
conditioning=None,
|
||||
callback=None,
|
||||
normals_sequence=None,
|
||||
img_callback=None,
|
||||
quantize_x0=False,
|
||||
eta=0.,
|
||||
mask=None,
|
||||
x0=None,
|
||||
temperature=1.,
|
||||
noise_dropout=0.,
|
||||
score_corrector=None,
|
||||
corrector_kwargs=None,
|
||||
verbose=True,
|
||||
x_T=None,
|
||||
log_every_t=100,
|
||||
unconditional_guidance_scale=1.,
|
||||
unconditional_conditioning=None,
|
||||
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||
dynamic_threshold=None,
|
||||
**kwargs
|
||||
):
|
||||
if conditioning is not None:
|
||||
if isinstance(conditioning, dict):
|
||||
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
||||
if cbs != batch_size:
|
||||
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||
else:
|
||||
if conditioning.shape[0] != batch_size:
|
||||
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||
|
||||
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||
# sampling
|
||||
C, H, W = shape
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
mask=mask, x0=x0,
|
||||
ddim_use_original_steps=False,
|
||||
noise_dropout=noise_dropout,
|
||||
temperature=temperature,
|
||||
score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
x_T=x_T,
|
||||
log_every_t=log_every_t,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
)
|
||||
return samples, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
x_T=None, ddim_use_original_steps=False,
|
||||
callback=None, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
||||
dynamic_threshold=None):
|
||||
device = self.model.betas.device
|
||||
b = shape[0]
|
||||
if x_T is None:
|
||||
img = torch.randn(shape, device=device)
|
||||
else:
|
||||
img = x_T
|
||||
|
||||
if timesteps is None:
|
||||
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
||||
elif timesteps is not None and not ddim_use_original_steps:
|
||||
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
||||
timesteps = self.ddim_timesteps[:subset_end]
|
||||
|
||||
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
||||
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
||||
|
||||
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
||||
old_eps = []
|
||||
|
||||
for i, step in enumerate(iterator):
|
||||
index = total_steps - i - 1
|
||||
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
||||
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
||||
|
||||
if mask is not None:
|
||||
assert x0 is not None
|
||||
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
||||
img = img_orig * mask + (1. - mask) * img
|
||||
|
||||
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
||||
quantize_denoised=quantize_denoised, temperature=temperature,
|
||||
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
||||
corrector_kwargs=corrector_kwargs,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
old_eps=old_eps, t_next=ts_next,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0, e_t = outs
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
if callback: callback(i)
|
||||
if img_callback: img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
return img, intermediates
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
||||
dynamic_threshold=None):
|
||||
b, *_, device = *x.shape, x.device
|
||||
|
||||
def get_model_output(x, t):
|
||||
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||
e_t = self.model.apply_model(x, t, c)
|
||||
else:
|
||||
x_in = torch.cat([x] * 2)
|
||||
t_in = torch.cat([t] * 2)
|
||||
c_in = torch.cat([unconditional_conditioning, c])
|
||||
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||
|
||||
if score_corrector is not None:
|
||||
assert self.model.parameterization == "eps"
|
||||
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||
|
||||
return e_t
|
||||
|
||||
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||
|
||||
def get_x_prev_and_pred_x0(e_t, index):
|
||||
# select parameters corresponding to the currently considered timestep
|
||||
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||
|
||||
# current prediction for x_0
|
||||
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||
if quantize_denoised:
|
||||
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||
if dynamic_threshold is not None:
|
||||
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
||||
# direction pointing to x_t
|
||||
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||
if noise_dropout > 0.:
|
||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||
return x_prev, pred_x0
|
||||
|
||||
e_t = get_model_output(x, t)
|
||||
if len(old_eps) == 0:
|
||||
# Pseudo Improved Euler (2nd order)
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||
e_t_next = get_model_output(x_prev, t_next)
|
||||
e_t_prime = (e_t + e_t_next) / 2
|
||||
elif len(old_eps) == 1:
|
||||
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||
elif len(old_eps) == 2:
|
||||
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||
elif len(old_eps) >= 3:
|
||||
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||
|
||||
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||
|
||||
return x_prev, pred_x0, e_t
|
22
iopaint/model/anytext/ldm/models/diffusion/sampling_util.py
Normal file
22
iopaint/model/anytext/ldm/models/diffusion/sampling_util.py
Normal file
@ -0,0 +1,22 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
def append_dims(x, target_dims):
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
||||
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
if dims_to_append < 0:
|
||||
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||||
return x[(...,) + (None,) * dims_to_append]
|
||||
|
||||
|
||||
def norm_thresholding(x0, value):
|
||||
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
||||
return x0 * (value / s)
|
||||
|
||||
|
||||
def spatial_norm_thresholding(x0, value):
|
||||
# b c h w
|
||||
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
||||
return x0 * (value / s)
|
360
iopaint/model/anytext/ldm/modules/attention.py
Normal file
360
iopaint/model/anytext/ldm/modules/attention.py
Normal file
@ -0,0 +1,360 @@
|
||||
from inspect import isfunction
|
||||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn, einsum
|
||||
from einops import rearrange, repeat
|
||||
from typing import Optional, Any
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import checkpoint
|
||||
|
||||
|
||||
# CrossAttn precision handling
|
||||
import os
|
||||
|
||||
_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
|
||||
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
|
||||
def uniq(arr):
|
||||
return {el: True for el in arr}.keys()
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def max_neg_value(t):
|
||||
return -torch.finfo(t.dtype).max
|
||||
|
||||
|
||||
def init_(tensor):
|
||||
dim = tensor.shape[-1]
|
||||
std = 1 / math.sqrt(dim)
|
||||
tensor.uniform_(-std, std)
|
||||
return tensor
|
||||
|
||||
|
||||
# feedforward
|
||||
class GEGLU(nn.Module):
|
||||
def __init__(self, dim_in, dim_out):
|
||||
super().__init__()
|
||||
self.proj = nn.Linear(dim_in, dim_out * 2)
|
||||
|
||||
def forward(self, x):
|
||||
x, gate = self.proj(x).chunk(2, dim=-1)
|
||||
return x * F.gelu(gate)
|
||||
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = int(dim * mult)
|
||||
dim_out = default(dim_out, dim)
|
||||
project_in = (
|
||||
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
|
||||
if not glu
|
||||
else GEGLU(dim, inner_dim)
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def Normalize(in_channels):
|
||||
return torch.nn.GroupNorm(
|
||||
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
||||
)
|
||||
|
||||
|
||||
class SpatialSelfAttention(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.k = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.v = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.proj_out = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = rearrange(q, "b c h w -> b (h w) c")
|
||||
k = rearrange(k, "b c h w -> b c (h w)")
|
||||
w_ = torch.einsum("bij,bjk->bik", q, k)
|
||||
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = rearrange(v, "b c h w -> b c (h w)")
|
||||
w_ = rearrange(w_, "b i j -> b j i")
|
||||
h_ = torch.einsum("bij,bjk->bik", v, w_)
|
||||
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
context_dim = default(context_dim, query_dim)
|
||||
|
||||
self.scale = dim_head**-0.5
|
||||
self.heads = heads
|
||||
|
||||
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
||||
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context=None, mask=None):
|
||||
h = self.heads
|
||||
|
||||
q = self.to_q(x)
|
||||
context = default(context, x)
|
||||
k = self.to_k(context)
|
||||
v = self.to_v(context)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
|
||||
|
||||
# force cast to fp32 to avoid overflowing
|
||||
if _ATTN_PRECISION == "fp32":
|
||||
with torch.autocast(enabled=False, device_type="cuda"):
|
||||
q, k = q.float(), k.float()
|
||||
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
||||
else:
|
||||
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
|
||||
|
||||
del q, k
|
||||
|
||||
if exists(mask):
|
||||
mask = rearrange(mask, "b ... -> b (...)")
|
||||
max_neg_value = -torch.finfo(sim.dtype).max
|
||||
mask = repeat(mask, "b j -> (b h) () j", h=h)
|
||||
sim.masked_fill_(~mask, max_neg_value)
|
||||
|
||||
# attention, what we cannot get enough of
|
||||
sim = sim.softmax(dim=-1)
|
||||
|
||||
out = einsum("b i j, b j d -> b i d", sim, v)
|
||||
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
|
||||
return self.to_out(out)
|
||||
|
||||
|
||||
class SDPACrossAttention(CrossAttention):
|
||||
def forward(self, x, context=None, mask=None):
|
||||
batch_size, sequence_length, inner_dim = x.shape
|
||||
|
||||
if mask is not None:
|
||||
mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
|
||||
mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
|
||||
|
||||
h = self.heads
|
||||
q_in = self.to_q(x)
|
||||
context = default(context, x)
|
||||
|
||||
k_in = self.to_k(context)
|
||||
v_in = self.to_v(context)
|
||||
|
||||
head_dim = inner_dim // h
|
||||
q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
|
||||
k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
|
||||
v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
|
||||
|
||||
del q_in, k_in, v_in
|
||||
|
||||
dtype = q.dtype
|
||||
if _ATTN_PRECISION == "fp32":
|
||||
q, k, v = q.float(), k.float(), v.float()
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
hidden_states = torch.nn.functional.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(
|
||||
batch_size, -1, h * head_dim
|
||||
)
|
||||
hidden_states = hidden_states.to(dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = self.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = self.to_out[1](hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BasicTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=0.0,
|
||||
context_dim=None,
|
||||
gated_ff=True,
|
||||
checkpoint=True,
|
||||
disable_self_attn=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||||
attn_cls = SDPACrossAttention
|
||||
else:
|
||||
attn_cls = CrossAttention
|
||||
|
||||
self.disable_self_attn = disable_self_attn
|
||||
self.attn1 = attn_cls(
|
||||
query_dim=dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
dropout=dropout,
|
||||
context_dim=context_dim if self.disable_self_attn else None,
|
||||
) # is a self-attention if not self.disable_self_attn
|
||||
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
||||
self.attn2 = attn_cls(
|
||||
query_dim=dim,
|
||||
context_dim=context_dim,
|
||||
heads=n_heads,
|
||||
dim_head=d_head,
|
||||
dropout=dropout,
|
||||
) # is self-attn if context is none
|
||||
self.norm1 = nn.LayerNorm(dim)
|
||||
self.norm2 = nn.LayerNorm(dim)
|
||||
self.norm3 = nn.LayerNorm(dim)
|
||||
self.checkpoint = checkpoint
|
||||
|
||||
def forward(self, x, context=None):
|
||||
return checkpoint(
|
||||
self._forward, (x, context), self.parameters(), self.checkpoint
|
||||
)
|
||||
|
||||
def _forward(self, x, context=None):
|
||||
x = (
|
||||
self.attn1(
|
||||
self.norm1(x), context=context if self.disable_self_attn else None
|
||||
)
|
||||
+ x
|
||||
)
|
||||
x = self.attn2(self.norm2(x), context=context) + x
|
||||
x = self.ff(self.norm3(x)) + x
|
||||
return x
|
||||
|
||||
|
||||
class SpatialTransformer(nn.Module):
|
||||
"""
|
||||
Transformer block for image-like data.
|
||||
First, project the input (aka embedding)
|
||||
and reshape to b, t, d.
|
||||
Then apply standard transformer action.
|
||||
Finally, reshape to image
|
||||
NEW: use_linear for more efficiency instead of the 1x1 convs
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
n_heads,
|
||||
d_head,
|
||||
depth=1,
|
||||
dropout=0.0,
|
||||
context_dim=None,
|
||||
disable_self_attn=False,
|
||||
use_linear=False,
|
||||
use_checkpoint=True,
|
||||
):
|
||||
super().__init__()
|
||||
if exists(context_dim) and not isinstance(context_dim, list):
|
||||
context_dim = [context_dim]
|
||||
self.in_channels = in_channels
|
||||
inner_dim = n_heads * d_head
|
||||
self.norm = Normalize(in_channels)
|
||||
if not use_linear:
|
||||
self.proj_in = nn.Conv2d(
|
||||
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
else:
|
||||
self.proj_in = nn.Linear(in_channels, inner_dim)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
inner_dim,
|
||||
n_heads,
|
||||
d_head,
|
||||
dropout=dropout,
|
||||
context_dim=context_dim[d],
|
||||
disable_self_attn=disable_self_attn,
|
||||
checkpoint=use_checkpoint,
|
||||
)
|
||||
for d in range(depth)
|
||||
]
|
||||
)
|
||||
if not use_linear:
|
||||
self.proj_out = zero_module(
|
||||
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
||||
)
|
||||
else:
|
||||
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
|
||||
self.use_linear = use_linear
|
||||
|
||||
def forward(self, x, context=None):
|
||||
# note: if no context is given, cross-attention defaults to self-attention
|
||||
if not isinstance(context, list):
|
||||
context = [context]
|
||||
b, c, h, w = x.shape
|
||||
x_in = x
|
||||
x = self.norm(x)
|
||||
if not self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
|
||||
if self.use_linear:
|
||||
x = self.proj_in(x)
|
||||
for i, block in enumerate(self.transformer_blocks):
|
||||
x = block(x, context=context[i])
|
||||
if self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
|
||||
if not self.use_linear:
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
973
iopaint/model/anytext/ldm/modules/diffusionmodules/model.py
Normal file
973
iopaint/model/anytext/ldm/modules/diffusionmodules/model.py
Normal file
@ -0,0 +1,973 @@
|
||||
# pytorch_diffusion + derived encoder decoder
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def get_timestep_embedding(timesteps, embedding_dim):
|
||||
"""
|
||||
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
||||
From Fairseq.
|
||||
Build sinusoidal embeddings.
|
||||
This matches the implementation in tensor2tensor, but differs slightly
|
||||
from the description in Section 3.5 of "Attention Is All You Need".
|
||||
"""
|
||||
assert len(timesteps.shape) == 1
|
||||
|
||||
half_dim = embedding_dim // 2
|
||||
emb = math.log(10000) / (half_dim - 1)
|
||||
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
||||
emb = emb.to(device=timesteps.device)
|
||||
emb = timesteps.float()[:, None] * emb[None, :]
|
||||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||||
if embedding_dim % 2 == 1: # zero pad
|
||||
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
||||
return emb
|
||||
|
||||
|
||||
def nonlinearity(x):
|
||||
# swish
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
def Normalize(in_channels, num_groups=32):
|
||||
return torch.nn.GroupNorm(
|
||||
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
||||
)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
||||
if self.with_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv):
|
||||
super().__init__()
|
||||
self.with_conv = with_conv
|
||||
if self.with_conv:
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
if self.with_conv:
|
||||
pad = (0, 1, 0, 1)
|
||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
||||
x = self.conv(x)
|
||||
else:
|
||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||
return x
|
||||
|
||||
|
||||
class ResnetBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
in_channels,
|
||||
out_channels=None,
|
||||
conv_shortcut=False,
|
||||
dropout,
|
||||
temb_channels=512,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
out_channels = in_channels if out_channels is None else out_channels
|
||||
self.out_channels = out_channels
|
||||
self.use_conv_shortcut = conv_shortcut
|
||||
|
||||
self.norm1 = Normalize(in_channels)
|
||||
self.conv1 = torch.nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
if temb_channels > 0:
|
||||
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
||||
self.norm2 = Normalize(out_channels)
|
||||
self.dropout = torch.nn.Dropout(dropout)
|
||||
self.conv2 = torch.nn.Conv2d(
|
||||
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
self.conv_shortcut = torch.nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
else:
|
||||
self.nin_shortcut = torch.nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x, temb):
|
||||
h = x
|
||||
h = self.norm1(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv1(h)
|
||||
|
||||
if temb is not None:
|
||||
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
||||
|
||||
h = self.norm2(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.dropout(h)
|
||||
h = self.conv2(h)
|
||||
|
||||
if self.in_channels != self.out_channels:
|
||||
if self.use_conv_shortcut:
|
||||
x = self.conv_shortcut(x)
|
||||
else:
|
||||
x = self.nin_shortcut(x)
|
||||
|
||||
return x + h
|
||||
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.k = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.v = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.proj_out = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
q = q.reshape(b, c, h * w)
|
||||
q = q.permute(0, 2, 1) # b,hw,c
|
||||
k = k.reshape(b, c, h * w) # b,c,hw
|
||||
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
||||
w_ = w_ * (int(c) ** (-0.5))
|
||||
w_ = torch.nn.functional.softmax(w_, dim=2)
|
||||
|
||||
# attend to values
|
||||
v = v.reshape(b, c, h * w)
|
||||
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
||||
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
||||
h_ = h_.reshape(b, c, h, w)
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
class AttnBlock2_0(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.norm = Normalize(in_channels)
|
||||
self.q = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.k = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.v = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
self.proj_out = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h_ = x
|
||||
h_ = self.norm(h_)
|
||||
# output: [1, 512, 64, 64]
|
||||
q = self.q(h_)
|
||||
k = self.k(h_)
|
||||
v = self.v(h_)
|
||||
|
||||
# compute attention
|
||||
b, c, h, w = q.shape
|
||||
|
||||
# q = q.reshape(b, c, h * w).transpose()
|
||||
# q = q.permute(0, 2, 1) # b,hw,c
|
||||
# k = k.reshape(b, c, h * w) # b,c,hw
|
||||
q = q.transpose(1, 2)
|
||||
k = k.transpose(1, 2)
|
||||
v = v.transpose(1, 2)
|
||||
# (batch, num_heads, seq_len, head_dim)
|
||||
hidden_states = torch.nn.functional.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
hidden_states = hidden_states.transpose(1, 2)
|
||||
hidden_states = hidden_states.to(q.dtype)
|
||||
|
||||
h_ = self.proj_out(hidden_states)
|
||||
|
||||
return x + h_
|
||||
|
||||
|
||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
||||
assert attn_type in [
|
||||
"vanilla",
|
||||
"vanilla-xformers",
|
||||
"memory-efficient-cross-attn",
|
||||
"linear",
|
||||
"none",
|
||||
], f"attn_type {attn_type} unknown"
|
||||
assert attn_kwargs is None
|
||||
if hasattr(torch.nn.functional, "scaled_dot_product_attention"):
|
||||
# print(f"Using torch.nn.functional.scaled_dot_product_attention")
|
||||
return AttnBlock2_0(in_channels)
|
||||
return AttnBlock(in_channels)
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
use_timestep=True,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
):
|
||||
super().__init__()
|
||||
if use_linear_attn:
|
||||
attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = self.ch * 4
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
self.use_timestep = use_timestep
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
self.temb = nn.Module()
|
||||
self.temb.dense = nn.ModuleList(
|
||||
[
|
||||
torch.nn.Linear(self.ch, self.temb_ch),
|
||||
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
||||
]
|
||||
)
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(
|
||||
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
skip_in = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
if i_block == self.num_res_blocks:
|
||||
skip_in = ch * in_ch_mult[i_level]
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in + skip_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x, t=None, context=None):
|
||||
# assert x.shape[2] == x.shape[3] == self.resolution
|
||||
if context is not None:
|
||||
# assume aligned context, cat along channel axis
|
||||
x = torch.cat((x, context), dim=1)
|
||||
if self.use_timestep:
|
||||
# timestep embedding
|
||||
assert t is not None
|
||||
temb = get_timestep_embedding(t, self.ch)
|
||||
temb = self.temb.dense[0](temb)
|
||||
temb = nonlinearity(temb)
|
||||
temb = self.temb.dense[1](temb)
|
||||
else:
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](
|
||||
torch.cat([h, hs.pop()], dim=1), temb
|
||||
)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
def get_last_layer(self):
|
||||
return self.conv_out.weight
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
double_z=True,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
**ignore_kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if use_linear_attn:
|
||||
attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
|
||||
# downsampling
|
||||
self.conv_in = torch.nn.Conv2d(
|
||||
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
curr_res = resolution
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
self.in_ch_mult = in_ch_mult
|
||||
self.down = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_in = ch * in_ch_mult[i_level]
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
down = nn.Module()
|
||||
down.block = block
|
||||
down.attn = attn
|
||||
if i_level != self.num_resolutions - 1:
|
||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res // 2
|
||||
self.down.append(down)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in,
|
||||
2 * z_channels if double_z else z_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# downsampling
|
||||
hs = [self.conv_in(x)]
|
||||
for i_level in range(self.num_resolutions):
|
||||
for i_block in range(self.num_res_blocks):
|
||||
h = self.down[i_level].block[i_block](hs[-1], temb)
|
||||
if len(self.down[i_level].attn) > 0:
|
||||
h = self.down[i_level].attn[i_block](h)
|
||||
hs.append(h)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
hs.append(self.down[i_level].downsample(hs[-1]))
|
||||
|
||||
# middle
|
||||
h = hs[-1]
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# end
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
ch,
|
||||
out_ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
in_channels,
|
||||
resolution,
|
||||
z_channels,
|
||||
give_pre_end=False,
|
||||
tanh_out=False,
|
||||
use_linear_attn=False,
|
||||
attn_type="vanilla",
|
||||
**ignorekwargs,
|
||||
):
|
||||
super().__init__()
|
||||
if use_linear_attn:
|
||||
attn_type = "linear"
|
||||
self.ch = ch
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.resolution = resolution
|
||||
self.in_channels = in_channels
|
||||
self.give_pre_end = give_pre_end
|
||||
self.tanh_out = tanh_out
|
||||
|
||||
# compute in_ch_mult, block_in and curr_res at lowest res
|
||||
in_ch_mult = (1,) + tuple(ch_mult)
|
||||
block_in = ch * ch_mult[self.num_resolutions - 1]
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.z_shape = (1, z_channels, curr_res, curr_res)
|
||||
print(
|
||||
"Working with z of shape {} = {} dimensions.".format(
|
||||
self.z_shape, np.prod(self.z_shape)
|
||||
)
|
||||
)
|
||||
|
||||
# z to block_in
|
||||
self.conv_in = torch.nn.Conv2d(
|
||||
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
# middle
|
||||
self.mid = nn.Module()
|
||||
self.mid.block_1 = ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
||||
self.mid.block_2 = ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_in,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
|
||||
# upsampling
|
||||
self.up = nn.ModuleList()
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
block = nn.ModuleList()
|
||||
attn = nn.ModuleList()
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
if curr_res in attn_resolutions:
|
||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
||||
up = nn.Module()
|
||||
up.block = block
|
||||
up.attn = attn
|
||||
if i_level != 0:
|
||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
||||
curr_res = curr_res * 2
|
||||
self.up.insert(0, up) # prepend to get consistent order
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, z):
|
||||
# assert z.shape[1:] == self.z_shape[1:]
|
||||
self.last_z_shape = z.shape
|
||||
|
||||
# timestep embedding
|
||||
temb = None
|
||||
|
||||
# z to block_in
|
||||
h = self.conv_in(z)
|
||||
|
||||
# middle
|
||||
h = self.mid.block_1(h, temb)
|
||||
h = self.mid.attn_1(h)
|
||||
h = self.mid.block_2(h, temb)
|
||||
|
||||
# upsampling
|
||||
for i_level in reversed(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.up[i_level].block[i_block](h, temb)
|
||||
if len(self.up[i_level].attn) > 0:
|
||||
h = self.up[i_level].attn[i_block](h)
|
||||
if i_level != 0:
|
||||
h = self.up[i_level].upsample(h)
|
||||
|
||||
# end
|
||||
if self.give_pre_end:
|
||||
return h
|
||||
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
if self.tanh_out:
|
||||
h = torch.tanh(h)
|
||||
return h
|
||||
|
||||
|
||||
class SimpleDecoder(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.model = nn.ModuleList(
|
||||
[
|
||||
nn.Conv2d(in_channels, in_channels, 1),
|
||||
ResnetBlock(
|
||||
in_channels=in_channels,
|
||||
out_channels=2 * in_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0,
|
||||
),
|
||||
ResnetBlock(
|
||||
in_channels=2 * in_channels,
|
||||
out_channels=4 * in_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0,
|
||||
),
|
||||
ResnetBlock(
|
||||
in_channels=4 * in_channels,
|
||||
out_channels=2 * in_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0,
|
||||
),
|
||||
nn.Conv2d(2 * in_channels, in_channels, 1),
|
||||
Upsample(in_channels, with_conv=True),
|
||||
]
|
||||
)
|
||||
# end
|
||||
self.norm_out = Normalize(in_channels)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
for i, layer in enumerate(self.model):
|
||||
if i in [1, 2, 3]:
|
||||
x = layer(x, None)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
h = self.norm_out(x)
|
||||
h = nonlinearity(h)
|
||||
x = self.conv_out(h)
|
||||
return x
|
||||
|
||||
|
||||
class UpsampleDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
ch,
|
||||
num_res_blocks,
|
||||
resolution,
|
||||
ch_mult=(2, 2),
|
||||
dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
# upsampling
|
||||
self.temb_ch = 0
|
||||
self.num_resolutions = len(ch_mult)
|
||||
self.num_res_blocks = num_res_blocks
|
||||
block_in = in_channels
|
||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
||||
self.res_blocks = nn.ModuleList()
|
||||
self.upsample_blocks = nn.ModuleList()
|
||||
for i_level in range(self.num_resolutions):
|
||||
res_block = []
|
||||
block_out = ch * ch_mult[i_level]
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
res_block.append(
|
||||
ResnetBlock(
|
||||
in_channels=block_in,
|
||||
out_channels=block_out,
|
||||
temb_channels=self.temb_ch,
|
||||
dropout=dropout,
|
||||
)
|
||||
)
|
||||
block_in = block_out
|
||||
self.res_blocks.append(nn.ModuleList(res_block))
|
||||
if i_level != self.num_resolutions - 1:
|
||||
self.upsample_blocks.append(Upsample(block_in, True))
|
||||
curr_res = curr_res * 2
|
||||
|
||||
# end
|
||||
self.norm_out = Normalize(block_in)
|
||||
self.conv_out = torch.nn.Conv2d(
|
||||
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# upsampling
|
||||
h = x
|
||||
for k, i_level in enumerate(range(self.num_resolutions)):
|
||||
for i_block in range(self.num_res_blocks + 1):
|
||||
h = self.res_blocks[i_level][i_block](h, None)
|
||||
if i_level != self.num_resolutions - 1:
|
||||
h = self.upsample_blocks[k](h)
|
||||
h = self.norm_out(h)
|
||||
h = nonlinearity(h)
|
||||
h = self.conv_out(h)
|
||||
return h
|
||||
|
||||
|
||||
class LatentRescaler(nn.Module):
|
||||
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
||||
super().__init__()
|
||||
# residual block, interpolate, residual block
|
||||
self.factor = factor
|
||||
self.conv_in = nn.Conv2d(
|
||||
in_channels, mid_channels, kernel_size=3, stride=1, padding=1
|
||||
)
|
||||
self.res_block1 = nn.ModuleList(
|
||||
[
|
||||
ResnetBlock(
|
||||
in_channels=mid_channels,
|
||||
out_channels=mid_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0,
|
||||
)
|
||||
for _ in range(depth)
|
||||
]
|
||||
)
|
||||
self.attn = AttnBlock(mid_channels)
|
||||
self.res_block2 = nn.ModuleList(
|
||||
[
|
||||
ResnetBlock(
|
||||
in_channels=mid_channels,
|
||||
out_channels=mid_channels,
|
||||
temb_channels=0,
|
||||
dropout=0.0,
|
||||
)
|
||||
for _ in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
self.conv_out = nn.Conv2d(
|
||||
mid_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_in(x)
|
||||
for block in self.res_block1:
|
||||
x = block(x, None)
|
||||
x = torch.nn.functional.interpolate(
|
||||
x,
|
||||
size=(
|
||||
int(round(x.shape[2] * self.factor)),
|
||||
int(round(x.shape[3] * self.factor)),
|
||||
),
|
||||
)
|
||||
x = self.attn(x)
|
||||
for block in self.res_block2:
|
||||
x = block(x, None)
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class MergedRescaleEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
ch,
|
||||
resolution,
|
||||
out_ch,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
rescale_factor=1.0,
|
||||
rescale_module_depth=1,
|
||||
):
|
||||
super().__init__()
|
||||
intermediate_chn = ch * ch_mult[-1]
|
||||
self.encoder = Encoder(
|
||||
in_channels=in_channels,
|
||||
num_res_blocks=num_res_blocks,
|
||||
ch=ch,
|
||||
ch_mult=ch_mult,
|
||||
z_channels=intermediate_chn,
|
||||
double_z=False,
|
||||
resolution=resolution,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
out_ch=None,
|
||||
)
|
||||
self.rescaler = LatentRescaler(
|
||||
factor=rescale_factor,
|
||||
in_channels=intermediate_chn,
|
||||
mid_channels=intermediate_chn,
|
||||
out_channels=out_ch,
|
||||
depth=rescale_module_depth,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.encoder(x)
|
||||
x = self.rescaler(x)
|
||||
return x
|
||||
|
||||
|
||||
class MergedRescaleDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
z_channels,
|
||||
out_ch,
|
||||
resolution,
|
||||
num_res_blocks,
|
||||
attn_resolutions,
|
||||
ch,
|
||||
ch_mult=(1, 2, 4, 8),
|
||||
dropout=0.0,
|
||||
resamp_with_conv=True,
|
||||
rescale_factor=1.0,
|
||||
rescale_module_depth=1,
|
||||
):
|
||||
super().__init__()
|
||||
tmp_chn = z_channels * ch_mult[-1]
|
||||
self.decoder = Decoder(
|
||||
out_ch=out_ch,
|
||||
z_channels=tmp_chn,
|
||||
attn_resolutions=attn_resolutions,
|
||||
dropout=dropout,
|
||||
resamp_with_conv=resamp_with_conv,
|
||||
in_channels=None,
|
||||
num_res_blocks=num_res_blocks,
|
||||
ch_mult=ch_mult,
|
||||
resolution=resolution,
|
||||
ch=ch,
|
||||
)
|
||||
self.rescaler = LatentRescaler(
|
||||
factor=rescale_factor,
|
||||
in_channels=z_channels,
|
||||
mid_channels=tmp_chn,
|
||||
out_channels=tmp_chn,
|
||||
depth=rescale_module_depth,
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.rescaler(x)
|
||||
x = self.decoder(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsampler(nn.Module):
|
||||
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
||||
super().__init__()
|
||||
assert out_size >= in_size
|
||||
num_blocks = int(np.log2(out_size // in_size)) + 1
|
||||
factor_up = 1.0 + (out_size % in_size)
|
||||
print(
|
||||
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}"
|
||||
)
|
||||
self.rescaler = LatentRescaler(
|
||||
factor=factor_up,
|
||||
in_channels=in_channels,
|
||||
mid_channels=2 * in_channels,
|
||||
out_channels=in_channels,
|
||||
)
|
||||
self.decoder = Decoder(
|
||||
out_ch=out_channels,
|
||||
resolution=out_size,
|
||||
z_channels=in_channels,
|
||||
num_res_blocks=2,
|
||||
attn_resolutions=[],
|
||||
in_channels=None,
|
||||
ch=in_channels,
|
||||
ch_mult=[ch_mult for _ in range(num_blocks)],
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.rescaler(x)
|
||||
x = self.decoder(x)
|
||||
return x
|
||||
|
||||
|
||||
class Resize(nn.Module):
|
||||
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
||||
super().__init__()
|
||||
self.with_conv = learned
|
||||
self.mode = mode
|
||||
if self.with_conv:
|
||||
print(
|
||||
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode"
|
||||
)
|
||||
raise NotImplementedError()
|
||||
assert in_channels is not None
|
||||
# no asymmetric padding in torch conv, must do it ourselves
|
||||
self.conv = torch.nn.Conv2d(
|
||||
in_channels, in_channels, kernel_size=4, stride=2, padding=1
|
||||
)
|
||||
|
||||
def forward(self, x, scale_factor=1.0):
|
||||
if scale_factor == 1.0:
|
||||
return x
|
||||
else:
|
||||
x = torch.nn.functional.interpolate(
|
||||
x, mode=self.mode, align_corners=False, scale_factor=scale_factor
|
||||
)
|
||||
return x
|
@ -0,0 +1,786 @@
|
||||
from abc import abstractmethod
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch as th
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import (
|
||||
checkpoint,
|
||||
conv_nd,
|
||||
linear,
|
||||
avg_pool_nd,
|
||||
zero_module,
|
||||
normalization,
|
||||
timestep_embedding,
|
||||
)
|
||||
from iopaint.model.anytext.ldm.modules.attention import SpatialTransformer
|
||||
from iopaint.model.anytext.ldm.util import exists
|
||||
|
||||
|
||||
# dummy replace
|
||||
def convert_module_to_f16(x):
|
||||
pass
|
||||
|
||||
def convert_module_to_f32(x):
|
||||
pass
|
||||
|
||||
|
||||
## go
|
||||
class AttentionPool2d(nn.Module):
|
||||
"""
|
||||
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
spacial_dim: int,
|
||||
embed_dim: int,
|
||||
num_heads_channels: int,
|
||||
output_dim: int = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
||||
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
||||
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
||||
self.num_heads = embed_dim // num_heads_channels
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
|
||||
def forward(self, x):
|
||||
b, c, *_spatial = x.shape
|
||||
x = x.reshape(b, c, -1) # NC(HW)
|
||||
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
||||
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
||||
x = self.qkv_proj(x)
|
||||
x = self.attention(x)
|
||||
x = self.c_proj(x)
|
||||
return x[:, :, 0]
|
||||
|
||||
|
||||
class TimestepBlock(nn.Module):
|
||||
"""
|
||||
Any module where forward() takes timestep embeddings as a second argument.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the module to `x` given `emb` timestep embeddings.
|
||||
"""
|
||||
|
||||
|
||||
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
||||
"""
|
||||
A sequential module that passes timestep embeddings to the children that
|
||||
support it as an extra input.
|
||||
"""
|
||||
|
||||
def forward(self, x, emb, context=None):
|
||||
for layer in self:
|
||||
if isinstance(layer, TimestepBlock):
|
||||
x = layer(x, emb)
|
||||
elif isinstance(layer, SpatialTransformer):
|
||||
x = layer(x, context)
|
||||
else:
|
||||
x = layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
"""
|
||||
An upsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
upsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
if use_conv:
|
||||
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
if self.dims == 3:
|
||||
x = F.interpolate(
|
||||
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
||||
)
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
|
||||
class TransposedUpsample(nn.Module):
|
||||
'Learned 2x upsampling without padding'
|
||||
def __init__(self, channels, out_channels=None, ks=5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
|
||||
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
||||
|
||||
def forward(self,x):
|
||||
return self.up(x)
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
"""
|
||||
A downsampling layer with an optional convolution.
|
||||
:param channels: channels in the inputs and outputs.
|
||||
:param use_conv: a bool determining if a convolution is applied.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
||||
downsampling occurs in the inner-two dimensions.
|
||||
"""
|
||||
|
||||
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.dims = dims
|
||||
stride = 2 if dims != 3 else (1, 2, 2)
|
||||
if use_conv:
|
||||
self.op = conv_nd(
|
||||
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
||||
)
|
||||
else:
|
||||
assert self.channels == self.out_channels
|
||||
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
||||
|
||||
def forward(self, x):
|
||||
assert x.shape[1] == self.channels
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class ResBlock(TimestepBlock):
|
||||
"""
|
||||
A residual block that can optionally change the number of channels.
|
||||
:param channels: the number of input channels.
|
||||
:param emb_channels: the number of timestep embedding channels.
|
||||
:param dropout: the rate of dropout.
|
||||
:param out_channels: if specified, the number of out channels.
|
||||
:param use_conv: if True and out_channels is specified, use a spatial
|
||||
convolution instead of a smaller 1x1 convolution to change the
|
||||
channels in the skip connection.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
||||
:param up: if True, use this block for upsampling.
|
||||
:param down: if True, use this block for downsampling.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
emb_channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
dims=2,
|
||||
use_checkpoint=False,
|
||||
up=False,
|
||||
down=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.emb_channels = emb_channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False, dims)
|
||||
self.x_upd = Upsample(channels, False, dims)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False, dims)
|
||||
self.x_upd = Downsample(channels, False, dims)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.emb_layers = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
linear(
|
||||
emb_channels,
|
||||
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
||||
),
|
||||
)
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(
|
||||
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
||||
),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = conv_nd(
|
||||
dims, channels, self.out_channels, 3, padding=1
|
||||
)
|
||||
else:
|
||||
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x, emb):
|
||||
"""
|
||||
Apply the block to a Tensor, conditioned on a timestep embedding.
|
||||
:param x: an [N x C x ...] Tensor of features.
|
||||
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
return checkpoint(
|
||||
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
||||
)
|
||||
|
||||
|
||||
def _forward(self, x, emb):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
emb_out = self.emb_layers(emb).type(h.dtype)
|
||||
while len(emb_out.shape) < len(h.shape):
|
||||
emb_out = emb_out[..., None]
|
||||
if self.use_scale_shift_norm:
|
||||
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
||||
scale, shift = th.chunk(emb_out, 2, dim=1)
|
||||
h = out_norm(h) * (1 + scale) + shift
|
||||
h = out_rest(h)
|
||||
else:
|
||||
h = h + emb_out
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
"""
|
||||
An attention block that allows spatial positions to attend to each other.
|
||||
Originally ported from here, but adapted to the N-d case.
|
||||
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
use_checkpoint=False,
|
||||
use_new_attention_order=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
assert (
|
||||
channels % num_head_channels == 0
|
||||
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
||||
self.num_heads = channels // num_head_channels
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.norm = normalization(channels)
|
||||
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
||||
if use_new_attention_order:
|
||||
# split qkv before split heads
|
||||
self.attention = QKVAttention(self.num_heads)
|
||||
else:
|
||||
# split heads before split qkv
|
||||
self.attention = QKVAttentionLegacy(self.num_heads)
|
||||
|
||||
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
||||
#return pt_checkpoint(self._forward, x) # pytorch
|
||||
|
||||
def _forward(self, x):
|
||||
b, c, *spatial = x.shape
|
||||
x = x.reshape(b, c, -1)
|
||||
qkv = self.qkv(self.norm(x))
|
||||
h = self.attention(qkv)
|
||||
h = self.proj_out(h)
|
||||
return (x + h).reshape(b, c, *spatial)
|
||||
|
||||
|
||||
def count_flops_attn(model, _x, y):
|
||||
"""
|
||||
A counter for the `thop` package to count the operations in an
|
||||
attention operation.
|
||||
Meant to be used like:
|
||||
macs, params = thop.profile(
|
||||
model,
|
||||
inputs=(inputs, timestamps),
|
||||
custom_ops={QKVAttention: QKVAttention.count_flops},
|
||||
)
|
||||
"""
|
||||
b, c, *spatial = y[0].shape
|
||||
num_spatial = int(np.prod(spatial))
|
||||
# We perform two matmuls with the same number of ops.
|
||||
# The first computes the weight matrix, the second computes
|
||||
# the combination of the value vectors.
|
||||
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
||||
model.total_ops += th.DoubleTensor([matmul_ops])
|
||||
|
||||
|
||||
class QKVAttentionLegacy(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts", q * scale, k * scale
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v)
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class QKVAttention(nn.Module):
|
||||
"""
|
||||
A module which performs QKV attention and splits in a different order.
|
||||
"""
|
||||
|
||||
def __init__(self, n_heads):
|
||||
super().__init__()
|
||||
self.n_heads = n_heads
|
||||
|
||||
def forward(self, qkv):
|
||||
"""
|
||||
Apply QKV attention.
|
||||
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
||||
:return: an [N x (H * C) x T] tensor after attention.
|
||||
"""
|
||||
bs, width, length = qkv.shape
|
||||
assert width % (3 * self.n_heads) == 0
|
||||
ch = width // (3 * self.n_heads)
|
||||
q, k, v = qkv.chunk(3, dim=1)
|
||||
scale = 1 / math.sqrt(math.sqrt(ch))
|
||||
weight = th.einsum(
|
||||
"bct,bcs->bts",
|
||||
(q * scale).view(bs * self.n_heads, ch, length),
|
||||
(k * scale).view(bs * self.n_heads, ch, length),
|
||||
) # More stable with f16 than dividing afterwards
|
||||
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
||||
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
||||
return a.reshape(bs, -1, length)
|
||||
|
||||
@staticmethod
|
||||
def count_flops(model, _x, y):
|
||||
return count_flops_attn(model, _x, y)
|
||||
|
||||
|
||||
class UNetModel(nn.Module):
|
||||
"""
|
||||
The full UNet model with attention and timestep embedding.
|
||||
:param in_channels: channels in the input Tensor.
|
||||
:param model_channels: base channel count for the model.
|
||||
:param out_channels: channels in the output Tensor.
|
||||
:param num_res_blocks: number of residual blocks per downsample.
|
||||
:param attention_resolutions: a collection of downsample rates at which
|
||||
attention will take place. May be a set, list, or tuple.
|
||||
For example, if this contains 4, then at 4x downsampling, attention
|
||||
will be used.
|
||||
:param dropout: the dropout probability.
|
||||
:param channel_mult: channel multiplier for each level of the UNet.
|
||||
:param conv_resample: if True, use learned convolutions for upsampling and
|
||||
downsampling.
|
||||
:param dims: determines if the signal is 1D, 2D, or 3D.
|
||||
:param num_classes: if specified (as an int), then this model will be
|
||||
class-conditional with `num_classes` classes.
|
||||
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
||||
:param num_heads: the number of attention heads in each attention layer.
|
||||
:param num_heads_channels: if specified, ignore num_heads and instead use
|
||||
a fixed channel width per attention head.
|
||||
:param num_heads_upsample: works with num_heads to set a different number
|
||||
of heads for upsampling. Deprecated.
|
||||
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
||||
:param resblock_updown: use residual blocks for up/downsampling.
|
||||
:param use_new_attention_order: use a different attention pattern for potentially
|
||||
increased efficiency.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
in_channels,
|
||||
model_channels,
|
||||
out_channels,
|
||||
num_res_blocks,
|
||||
attention_resolutions,
|
||||
dropout=0,
|
||||
channel_mult=(1, 2, 4, 8),
|
||||
conv_resample=True,
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
use_fp16=False,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
use_scale_shift_norm=False,
|
||||
resblock_updown=False,
|
||||
use_new_attention_order=False,
|
||||
use_spatial_transformer=False, # custom transformer support
|
||||
transformer_depth=1, # custom transformer support
|
||||
context_dim=None, # custom transformer support
|
||||
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
||||
legacy=True,
|
||||
disable_self_attentions=None,
|
||||
num_attention_blocks=None,
|
||||
disable_middle_self_attn=False,
|
||||
use_linear_in_transformer=False,
|
||||
):
|
||||
super().__init__()
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
|
||||
self.image_size = image_size
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
self.out_channels = out_channels
|
||||
if isinstance(num_res_blocks, int):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
||||
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
||||
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
||||
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
||||
f"attention will still not be set.")
|
||||
self.use_fp16 = use_fp16
|
||||
self.attention_resolutions = attention_resolutions
|
||||
self.dropout = dropout
|
||||
self.channel_mult = channel_mult
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.dtype = th.float16 if use_fp16 else th.float32
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.predict_codebook_ids = n_embed is not None
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self._feature_size = model_channels
|
||||
input_block_chans = [model_channels]
|
||||
ch = model_channels
|
||||
ds = 1
|
||||
for level, mult in enumerate(channel_mult):
|
||||
for nr in range(self.num_res_blocks[level]):
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=mult * model_channels,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
out_ch = ch
|
||||
self.input_blocks.append(
|
||||
TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
self.middle_block = TimestepEmbedSequential(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
),
|
||||
)
|
||||
self._feature_size += ch
|
||||
|
||||
self.output_blocks = nn.ModuleList([])
|
||||
for level, mult in list(enumerate(channel_mult))[::-1]:
|
||||
for i in range(self.num_res_blocks[level] + 1):
|
||||
ich = input_block_chans.pop()
|
||||
layers = [
|
||||
ResBlock(
|
||||
ch + ich,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=model_channels * mult,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
)
|
||||
]
|
||||
ch = model_channels * mult
|
||||
if ds in attention_resolutions:
|
||||
if num_head_channels == -1:
|
||||
dim_head = ch // num_heads
|
||||
else:
|
||||
num_heads = ch // num_head_channels
|
||||
dim_head = num_head_channels
|
||||
if legacy:
|
||||
#num_heads = 1
|
||||
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
||||
if exists(disable_self_attentions):
|
||||
disabled_sa = disable_self_attentions[level]
|
||||
else:
|
||||
disabled_sa = False
|
||||
|
||||
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
||||
layers.append(
|
||||
AttentionBlock(
|
||||
ch,
|
||||
use_checkpoint=use_checkpoint,
|
||||
num_heads=num_heads_upsample,
|
||||
num_head_channels=dim_head,
|
||||
use_new_attention_order=use_new_attention_order,
|
||||
) if not use_spatial_transformer else SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
if level and i == self.num_res_blocks[level]:
|
||||
out_ch = ch
|
||||
layers.append(
|
||||
ResBlock(
|
||||
ch,
|
||||
time_embed_dim,
|
||||
dropout,
|
||||
out_channels=out_ch,
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
up=True,
|
||||
)
|
||||
if resblock_updown
|
||||
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
||||
)
|
||||
ds //= 2
|
||||
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self._feature_size += ch
|
||||
|
||||
self.out = nn.Sequential(
|
||||
normalization(ch),
|
||||
nn.SiLU(),
|
||||
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
||||
)
|
||||
if self.predict_codebook_ids:
|
||||
self.id_predictor = nn.Sequential(
|
||||
normalization(ch),
|
||||
conv_nd(dims, model_channels, n_embed, 1),
|
||||
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
||||
)
|
||||
|
||||
def convert_to_fp16(self):
|
||||
"""
|
||||
Convert the torso of the model to float16.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f16)
|
||||
self.middle_block.apply(convert_module_to_f16)
|
||||
self.output_blocks.apply(convert_module_to_f16)
|
||||
|
||||
def convert_to_fp32(self):
|
||||
"""
|
||||
Convert the torso of the model to float32.
|
||||
"""
|
||||
self.input_blocks.apply(convert_module_to_f32)
|
||||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
:param x: an [N x C x ...] Tensor of inputs.
|
||||
:param timesteps: a 1-D batch of timesteps.
|
||||
:param context: conditioning plugged in via crossattn
|
||||
:param y: an [N] Tensor of labels, if class-conditional.
|
||||
:return: an [N x C x ...] Tensor of outputs.
|
||||
"""
|
||||
assert (y is not None) == (
|
||||
self.num_classes is not None
|
||||
), "must specify y if and only if the model is class-conditional"
|
||||
hs = []
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
||||
emb = self.time_embed(t_emb)
|
||||
|
||||
if self.num_classes is not None:
|
||||
assert y.shape[0] == x.shape[0]
|
||||
emb = emb + self.label_emb(y)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for module in self.input_blocks:
|
||||
h = module(h, emb, context)
|
||||
hs.append(h)
|
||||
h = self.middle_block(h, emb, context)
|
||||
for module in self.output_blocks:
|
||||
h = th.cat([h, hs.pop()], dim=1)
|
||||
h = module(h, emb, context)
|
||||
h = h.type(x.dtype)
|
||||
if self.predict_codebook_ids:
|
||||
return self.id_predictor(h)
|
||||
else:
|
||||
return self.out(h)
|
@ -0,0 +1,81 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from functools import partial
|
||||
|
||||
from iopaint.model.anytext.ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
|
||||
from iopaint.model.anytext.ldm.util import default
|
||||
|
||||
|
||||
class AbstractLowScaleModel(nn.Module):
|
||||
# for concatenating a downsampled image to the latent representation
|
||||
def __init__(self, noise_schedule_config=None):
|
||||
super(AbstractLowScaleModel, self).__init__()
|
||||
if noise_schedule_config is not None:
|
||||
self.register_schedule(**noise_schedule_config)
|
||||
|
||||
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
||||
cosine_s=cosine_s)
|
||||
alphas = 1. - betas
|
||||
alphas_cumprod = np.cumprod(alphas, axis=0)
|
||||
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
||||
|
||||
timesteps, = betas.shape
|
||||
self.num_timesteps = int(timesteps)
|
||||
self.linear_start = linear_start
|
||||
self.linear_end = linear_end
|
||||
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
||||
|
||||
to_torch = partial(torch.tensor, dtype=torch.float32)
|
||||
|
||||
self.register_buffer('betas', to_torch(betas))
|
||||
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
||||
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
||||
|
||||
# calculations for diffusion q(x_t | x_{t-1}) and others
|
||||
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
||||
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
||||
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
||||
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
||||
|
||||
def q_sample(self, x_start, t, noise=None):
|
||||
noise = default(noise, lambda: torch.randn_like(x_start))
|
||||
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
||||
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
||||
|
||||
def forward(self, x):
|
||||
return x, None
|
||||
|
||||
def decode(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class SimpleImageConcat(AbstractLowScaleModel):
|
||||
# no noise level conditioning
|
||||
def __init__(self):
|
||||
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
||||
self.max_noise_level = 0
|
||||
|
||||
def forward(self, x):
|
||||
# fix to constant noise level
|
||||
return x, torch.zeros(x.shape[0], device=x.device).long()
|
||||
|
||||
|
||||
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
||||
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
||||
super().__init__(noise_schedule_config=noise_schedule_config)
|
||||
self.max_noise_level = max_noise_level
|
||||
|
||||
def forward(self, x, noise_level=None):
|
||||
if noise_level is None:
|
||||
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
||||
else:
|
||||
assert isinstance(noise_level, torch.Tensor)
|
||||
z = self.q_sample(x, noise_level)
|
||||
return z, noise_level
|
||||
|
||||
|
||||
|
271
iopaint/model/anytext/ldm/modules/diffusionmodules/util.py
Normal file
271
iopaint/model/anytext/ldm/modules/diffusionmodules/util.py
Normal file
@ -0,0 +1,271 @@
|
||||
# adopted from
|
||||
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
||||
# and
|
||||
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
||||
# and
|
||||
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
||||
#
|
||||
# thanks!
|
||||
|
||||
|
||||
import os
|
||||
import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from einops import repeat
|
||||
|
||||
from iopaint.model.anytext.ldm.util import instantiate_from_config
|
||||
|
||||
|
||||
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
if schedule == "linear":
|
||||
betas = (
|
||||
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||||
)
|
||||
|
||||
elif schedule == "cosine":
|
||||
timesteps = (
|
||||
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||||
)
|
||||
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||||
alphas = torch.cos(alphas).pow(2)
|
||||
alphas = alphas / alphas[0]
|
||||
betas = 1 - alphas[1:] / alphas[:-1]
|
||||
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||||
|
||||
elif schedule == "sqrt_linear":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||||
elif schedule == "sqrt":
|
||||
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||||
else:
|
||||
raise ValueError(f"schedule '{schedule}' unknown.")
|
||||
return betas.numpy()
|
||||
|
||||
|
||||
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||||
if ddim_discr_method == 'uniform':
|
||||
c = num_ddpm_timesteps // num_ddim_timesteps
|
||||
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||||
elif ddim_discr_method == 'quad':
|
||||
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||||
else:
|
||||
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||||
|
||||
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||
steps_out = ddim_timesteps + 1
|
||||
if verbose:
|
||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||
return steps_out
|
||||
|
||||
|
||||
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||||
# select alphas for computing the variance schedule
|
||||
alphas = alphacums[ddim_timesteps]
|
||||
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||||
|
||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||
if verbose:
|
||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||
print(f'For the chosen value of eta, which is {eta}, '
|
||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||
return sigmas.to(torch.float32), alphas.to(torch.float32), alphas_prev.astype(np.float32)
|
||||
|
||||
|
||||
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||||
"""
|
||||
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||||
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||||
:param num_diffusion_timesteps: the number of betas to produce.
|
||||
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||||
produces the cumulative product of (1-beta) up to that
|
||||
part of the diffusion process.
|
||||
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||||
prevent singularities.
|
||||
"""
|
||||
betas = []
|
||||
for i in range(num_diffusion_timesteps):
|
||||
t1 = i / num_diffusion_timesteps
|
||||
t2 = (i + 1) / num_diffusion_timesteps
|
||||
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||||
return np.array(betas)
|
||||
|
||||
|
||||
def extract_into_tensor(a, t, x_shape):
|
||||
b, *_ = t.shape
|
||||
out = a.gather(-1, t)
|
||||
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||||
|
||||
|
||||
def checkpoint(func, inputs, params, flag):
|
||||
"""
|
||||
Evaluate a function without caching intermediate activations, allowing for
|
||||
reduced memory at the expense of extra compute in the backward pass.
|
||||
:param func: the function to evaluate.
|
||||
:param inputs: the argument sequence to pass to `func`.
|
||||
:param params: a sequence of parameters `func` depends on but does not
|
||||
explicitly take as arguments.
|
||||
:param flag: if False, disable gradient checkpointing.
|
||||
"""
|
||||
if flag:
|
||||
args = tuple(inputs) + tuple(params)
|
||||
return CheckpointFunction.apply(func, len(inputs), *args)
|
||||
else:
|
||||
return func(*inputs)
|
||||
|
||||
|
||||
class CheckpointFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, run_function, length, *args):
|
||||
ctx.run_function = run_function
|
||||
ctx.input_tensors = list(args[:length])
|
||||
ctx.input_params = list(args[length:])
|
||||
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
|
||||
"dtype": torch.get_autocast_gpu_dtype(),
|
||||
"cache_enabled": torch.is_autocast_cache_enabled()}
|
||||
with torch.no_grad():
|
||||
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||||
return output_tensors
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, *output_grads):
|
||||
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||||
with torch.enable_grad(), \
|
||||
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
||||
# Fixes a bug where the first op in run_function modifies the
|
||||
# Tensor storage in place, which is not allowed for detach()'d
|
||||
# Tensors.
|
||||
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||||
output_tensors = ctx.run_function(*shallow_copies)
|
||||
input_grads = torch.autograd.grad(
|
||||
output_tensors,
|
||||
ctx.input_tensors + ctx.input_params,
|
||||
output_grads,
|
||||
allow_unused=True,
|
||||
)
|
||||
del ctx.input_tensors
|
||||
del ctx.input_params
|
||||
del output_tensors
|
||||
return (None, None) + input_grads
|
||||
|
||||
|
||||
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||||
"""
|
||||
Create sinusoidal timestep embeddings.
|
||||
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||||
These may be fractional.
|
||||
:param dim: the dimension of the output.
|
||||
:param max_period: controls the minimum frequency of the embeddings.
|
||||
:return: an [N x dim] Tensor of positional embeddings.
|
||||
"""
|
||||
if not repeat_only:
|
||||
half = dim // 2
|
||||
freqs = torch.exp(
|
||||
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||||
).to(device=timesteps.device)
|
||||
args = timesteps[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
if dim % 2:
|
||||
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||||
else:
|
||||
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||||
return embedding
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
"""
|
||||
Zero out the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().zero_()
|
||||
return module
|
||||
|
||||
|
||||
def scale_module(module, scale):
|
||||
"""
|
||||
Scale the parameters of a module and return it.
|
||||
"""
|
||||
for p in module.parameters():
|
||||
p.detach().mul_(scale)
|
||||
return module
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def normalization(channels):
|
||||
"""
|
||||
Make a standard normalization layer.
|
||||
:param channels: number of input channels.
|
||||
:return: an nn.Module for normalization.
|
||||
"""
|
||||
return GroupNorm32(32, channels)
|
||||
|
||||
|
||||
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||||
class SiLU(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
|
||||
class GroupNorm32(nn.GroupNorm):
|
||||
def forward(self, x):
|
||||
# return super().forward(x.float()).type(x.dtype)
|
||||
return super().forward(x).type(x.dtype)
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D convolution module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.Conv1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.Conv3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
def linear(*args, **kwargs):
|
||||
"""
|
||||
Create a linear module.
|
||||
"""
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
def avg_pool_nd(dims, *args, **kwargs):
|
||||
"""
|
||||
Create a 1D, 2D, or 3D average pooling module.
|
||||
"""
|
||||
if dims == 1:
|
||||
return nn.AvgPool1d(*args, **kwargs)
|
||||
elif dims == 2:
|
||||
return nn.AvgPool2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return nn.AvgPool3d(*args, **kwargs)
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
|
||||
class HybridConditioner(nn.Module):
|
||||
|
||||
def __init__(self, c_concat_config, c_crossattn_config):
|
||||
super().__init__()
|
||||
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||||
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||||
|
||||
def forward(self, c_concat, c_crossattn):
|
||||
c_concat = self.concat_conditioner(c_concat)
|
||||
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||||
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
||||
|
||||
|
||||
def noise_like(shape, device, repeat=False):
|
||||
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
||||
noise = lambda: torch.randn(shape, device=device)
|
||||
return repeat_noise() if repeat else noise()
|
@ -0,0 +1,92 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
class AbstractDistribution:
|
||||
def sample(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
def mode(self):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class DiracDistribution(AbstractDistribution):
|
||||
def __init__(self, value):
|
||||
self.value = value
|
||||
|
||||
def sample(self):
|
||||
return self.value
|
||||
|
||||
def mode(self):
|
||||
return self.value
|
||||
|
||||
|
||||
class DiagonalGaussianDistribution(object):
|
||||
def __init__(self, parameters, deterministic=False):
|
||||
self.parameters = parameters
|
||||
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
||||
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
||||
self.deterministic = deterministic
|
||||
self.std = torch.exp(0.5 * self.logvar)
|
||||
self.var = torch.exp(self.logvar)
|
||||
if self.deterministic:
|
||||
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
||||
|
||||
def sample(self):
|
||||
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
||||
return x
|
||||
|
||||
def kl(self, other=None):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
else:
|
||||
if other is None:
|
||||
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
||||
+ self.var - 1.0 - self.logvar,
|
||||
dim=[1, 2, 3])
|
||||
else:
|
||||
return 0.5 * torch.sum(
|
||||
torch.pow(self.mean - other.mean, 2) / other.var
|
||||
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
||||
dim=[1, 2, 3])
|
||||
|
||||
def nll(self, sample, dims=[1,2,3]):
|
||||
if self.deterministic:
|
||||
return torch.Tensor([0.])
|
||||
logtwopi = np.log(2.0 * np.pi)
|
||||
return 0.5 * torch.sum(
|
||||
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
||||
dim=dims)
|
||||
|
||||
def mode(self):
|
||||
return self.mean
|
||||
|
||||
|
||||
def normal_kl(mean1, logvar1, mean2, logvar2):
|
||||
"""
|
||||
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
||||
Compute the KL divergence between two gaussians.
|
||||
Shapes are automatically broadcasted, so batches can be compared to
|
||||
scalars, among other use cases.
|
||||
"""
|
||||
tensor = None
|
||||
for obj in (mean1, logvar1, mean2, logvar2):
|
||||
if isinstance(obj, torch.Tensor):
|
||||
tensor = obj
|
||||
break
|
||||
assert tensor is not None, "at least one argument must be a Tensor"
|
||||
|
||||
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
||||
# Tensors, but it does not work for torch.exp().
|
||||
logvar1, logvar2 = [
|
||||
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
||||
for x in (logvar1, logvar2)
|
||||
]
|
||||
|
||||
return 0.5 * (
|
||||
-1.0
|
||||
+ logvar2
|
||||
- logvar1
|
||||
+ torch.exp(logvar1 - logvar2)
|
||||
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
||||
)
|
80
iopaint/model/anytext/ldm/modules/ema.py
Normal file
80
iopaint/model/anytext/ldm/modules/ema.py
Normal file
@ -0,0 +1,80 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class LitEma(nn.Module):
|
||||
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
||||
super().__init__()
|
||||
if decay < 0.0 or decay > 1.0:
|
||||
raise ValueError('Decay must be between 0 and 1')
|
||||
|
||||
self.m_name2s_name = {}
|
||||
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
||||
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
|
||||
else torch.tensor(-1, dtype=torch.int))
|
||||
|
||||
for name, p in model.named_parameters():
|
||||
if p.requires_grad:
|
||||
# remove as '.'-character is not allowed in buffers
|
||||
s_name = name.replace('.', '')
|
||||
self.m_name2s_name.update({name: s_name})
|
||||
self.register_buffer(s_name, p.clone().detach().data)
|
||||
|
||||
self.collected_params = []
|
||||
|
||||
def reset_num_updates(self):
|
||||
del self.num_updates
|
||||
self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
|
||||
|
||||
def forward(self, model):
|
||||
decay = self.decay
|
||||
|
||||
if self.num_updates >= 0:
|
||||
self.num_updates += 1
|
||||
decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
|
||||
|
||||
one_minus_decay = 1.0 - decay
|
||||
|
||||
with torch.no_grad():
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
sname = self.m_name2s_name[key]
|
||||
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
||||
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def copy_to(self, model):
|
||||
m_param = dict(model.named_parameters())
|
||||
shadow_params = dict(self.named_buffers())
|
||||
for key in m_param:
|
||||
if m_param[key].requires_grad:
|
||||
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
||||
else:
|
||||
assert not key in self.m_name2s_name
|
||||
|
||||
def store(self, parameters):
|
||||
"""
|
||||
Save the current parameters for restoring later.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
temporarily stored.
|
||||
"""
|
||||
self.collected_params = [param.clone() for param in parameters]
|
||||
|
||||
def restore(self, parameters):
|
||||
"""
|
||||
Restore the parameters stored with the `store` method.
|
||||
Useful to validate the model with EMA parameters without affecting the
|
||||
original optimization process. Store the parameters before the
|
||||
`copy_to` method. After validation (or model saving), use this to
|
||||
restore the former parameters.
|
||||
Args:
|
||||
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
||||
updated with the stored parameters.
|
||||
"""
|
||||
for c_param, param in zip(self.collected_params, parameters):
|
||||
param.data.copy_(c_param.data)
|
384
iopaint/model/anytext/ldm/modules/encoders/modules.py
Normal file
384
iopaint/model/anytext/ldm/modules/encoders/modules.py
Normal file
@ -0,0 +1,384 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoProcessor, CLIPVisionModelWithProjection
|
||||
|
||||
from iopaint.model.anytext.ldm.util import count_params
|
||||
|
||||
|
||||
def _expand_mask(mask, dtype, tgt_len=None):
|
||||
"""
|
||||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
||||
"""
|
||||
bsz, src_len = mask.size()
|
||||
tgt_len = tgt_len if tgt_len is not None else src_len
|
||||
|
||||
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
||||
|
||||
inverted_mask = 1.0 - expanded_mask
|
||||
|
||||
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
||||
|
||||
|
||||
def _build_causal_attention_mask(bsz, seq_len, dtype):
|
||||
# lazily create causal attention mask, with full attention between the vision tokens
|
||||
# pytorch uses additive attention mask; fill with -inf
|
||||
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
|
||||
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
||||
mask.triu_(1) # zero out the lower diagonal
|
||||
mask = mask.unsqueeze(1) # expand mask
|
||||
return mask
|
||||
|
||||
class AbstractEncoder(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def encode(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class IdentityEncoder(AbstractEncoder):
|
||||
|
||||
def encode(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class ClassEmbedder(nn.Module):
|
||||
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
|
||||
super().__init__()
|
||||
self.key = key
|
||||
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||||
self.n_classes = n_classes
|
||||
self.ucg_rate = ucg_rate
|
||||
|
||||
def forward(self, batch, key=None, disable_dropout=False):
|
||||
if key is None:
|
||||
key = self.key
|
||||
# this is for use in crossattn
|
||||
c = batch[key][:, None]
|
||||
if self.ucg_rate > 0. and not disable_dropout:
|
||||
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
||||
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
|
||||
c = c.long()
|
||||
c = self.embedding(c)
|
||||
return c
|
||||
|
||||
def get_unconditional_conditioning(self, bs, device="cuda"):
|
||||
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
||||
uc = torch.ones((bs,), device=device) * uc_class
|
||||
uc = {self.key: uc}
|
||||
return uc
|
||||
|
||||
|
||||
def disabled_train(self, mode=True):
|
||||
"""Overwrite model.train with this function to make sure train/eval mode
|
||||
does not change anymore."""
|
||||
return self
|
||||
|
||||
|
||||
class FrozenT5Embedder(AbstractEncoder):
|
||||
"""Uses the T5 transformer encoder for text"""
|
||||
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
||||
super().__init__()
|
||||
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
||||
self.transformer = T5EncoderModel.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length # TODO: typical value?
|
||||
if freeze:
|
||||
self.freeze()
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
#self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.transformer(input_ids=tokens)
|
||||
|
||||
z = outputs.last_hidden_state
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenCLIPEmbedder(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
||||
LAYERS = [
|
||||
"last",
|
||||
"pooled",
|
||||
"hidden"
|
||||
]
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
|
||||
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
self.transformer = CLIPTextModel.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
self.layer_idx = layer_idx
|
||||
if layer == "hidden":
|
||||
assert layer_idx is not None
|
||||
assert 0 <= abs(layer_idx) <= 12
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
# self.train = disabled_train
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
||||
if self.layer == "last":
|
||||
z = outputs.last_hidden_state
|
||||
elif self.layer == "pooled":
|
||||
z = outputs.pooler_output[:, None, :]
|
||||
else:
|
||||
z = outputs.hidden_states[self.layer_idx]
|
||||
return z
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
||||
"""
|
||||
Uses the OpenCLIP transformer encoder for text
|
||||
"""
|
||||
LAYERS = [
|
||||
# "pooled",
|
||||
"last",
|
||||
"penultimate"
|
||||
]
|
||||
|
||||
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
|
||||
freeze=True, layer="last"):
|
||||
super().__init__()
|
||||
assert layer in self.LAYERS
|
||||
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
|
||||
del model.visual
|
||||
self.model = model
|
||||
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
self.layer = layer
|
||||
if self.layer == "last":
|
||||
self.layer_idx = 0
|
||||
elif self.layer == "penultimate":
|
||||
self.layer_idx = 1
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
def freeze(self):
|
||||
self.model = self.model.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text):
|
||||
tokens = open_clip.tokenize(text)
|
||||
z = self.encode_with_transformer(tokens.to(self.device))
|
||||
return z
|
||||
|
||||
def encode_with_transformer(self, text):
|
||||
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
||||
x = x + self.model.positional_embedding
|
||||
x = x.permute(1, 0, 2) # NLD -> LND
|
||||
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
||||
x = x.permute(1, 0, 2) # LND -> NLD
|
||||
x = self.model.ln_final(x)
|
||||
return x
|
||||
|
||||
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
||||
for i, r in enumerate(self.model.transformer.resblocks):
|
||||
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
||||
break
|
||||
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
|
||||
x = checkpoint(r, x, attn_mask)
|
||||
else:
|
||||
x = r(x, attn_mask=attn_mask)
|
||||
return x
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
|
||||
class FrozenCLIPT5Encoder(AbstractEncoder):
|
||||
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
|
||||
clip_max_length=77, t5_max_length=77):
|
||||
super().__init__()
|
||||
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
||||
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
||||
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
|
||||
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
|
||||
|
||||
def encode(self, text):
|
||||
return self(text)
|
||||
|
||||
def forward(self, text):
|
||||
clip_z = self.clip_encoder.encode(text)
|
||||
t5_z = self.t5_encoder.encode(text)
|
||||
return [clip_z, t5_z]
|
||||
|
||||
|
||||
class FrozenCLIPEmbedderT3(AbstractEncoder):
|
||||
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
|
||||
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True, use_vision=False):
|
||||
super().__init__()
|
||||
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
||||
self.transformer = CLIPTextModel.from_pretrained(version)
|
||||
if use_vision:
|
||||
self.vit = CLIPVisionModelWithProjection.from_pretrained(version)
|
||||
self.processor = AutoProcessor.from_pretrained(version)
|
||||
self.device = device
|
||||
self.max_length = max_length
|
||||
if freeze:
|
||||
self.freeze()
|
||||
|
||||
def embedding_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
position_ids=None,
|
||||
inputs_embeds=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, :seq_length]
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.token_embedding(input_ids)
|
||||
if embedding_manager is not None:
|
||||
inputs_embeds = embedding_manager(input_ids, inputs_embeds)
|
||||
position_embeddings = self.position_embedding(position_ids)
|
||||
embeddings = inputs_embeds + position_embeddings
|
||||
return embeddings
|
||||
|
||||
self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
|
||||
|
||||
def encoder_forward(
|
||||
self,
|
||||
inputs_embeds,
|
||||
attention_mask=None,
|
||||
causal_attention_mask=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
encoder_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
hidden_states = inputs_embeds
|
||||
for idx, encoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
layer_outputs = encoder_layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = layer_outputs[0]
|
||||
if output_attentions:
|
||||
all_attentions = all_attentions + (layer_outputs[1],)
|
||||
if output_hidden_states:
|
||||
encoder_states = encoder_states + (hidden_states,)
|
||||
return hidden_states
|
||||
|
||||
self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
|
||||
|
||||
def text_encoder_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
if input_ids is None:
|
||||
raise ValueError("You have to specify either input_ids")
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
|
||||
bsz, seq_len = input_shape
|
||||
# CLIP's text model uses causal mask, prepare it here.
|
||||
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
||||
causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
|
||||
hidden_states.device
|
||||
)
|
||||
# expand attention_mask
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
||||
last_hidden_state = self.encoder(
|
||||
inputs_embeds=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
causal_attention_mask=causal_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||||
return last_hidden_state
|
||||
|
||||
self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
|
||||
|
||||
def transformer_forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
embedding_manager=None,
|
||||
):
|
||||
return self.text_model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
embedding_manager=embedding_manager
|
||||
)
|
||||
|
||||
self.transformer.forward = transformer_forward.__get__(self.transformer)
|
||||
|
||||
def freeze(self):
|
||||
self.transformer = self.transformer.eval()
|
||||
for param in self.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def forward(self, text, **kwargs):
|
||||
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||||
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||||
tokens = batch_encoding["input_ids"].to(self.device)
|
||||
z = self.transformer(input_ids=tokens, **kwargs)
|
||||
return z
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
return self(text, **kwargs)
|
197
iopaint/model/anytext/ldm/util.py
Normal file
197
iopaint/model/anytext/ldm/util.py
Normal file
@ -0,0 +1,197 @@
|
||||
import importlib
|
||||
|
||||
import torch
|
||||
from torch import optim
|
||||
import numpy as np
|
||||
|
||||
from inspect import isfunction
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
# wh a tuple of (width, height)
|
||||
# xc a list of captions to plot
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
for bi in range(b):
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
draw = ImageDraw.Draw(txt)
|
||||
font = ImageFont.truetype('font/Arial_Unicode.ttf', size=size)
|
||||
nc = int(32 * (wh[0] / 256))
|
||||
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
||||
|
||||
try:
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
txts = np.stack(txts)
|
||||
txts = torch.tensor(txts)
|
||||
return txts
|
||||
|
||||
|
||||
def ismap(x):
|
||||
if not isinstance(x, torch.Tensor):
|
||||
return False
|
||||
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
||||
|
||||
|
||||
def isimage(x):
|
||||
if not isinstance(x,torch.Tensor):
|
||||
return False
|
||||
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
||||
|
||||
|
||||
def exists(x):
|
||||
return x is not None
|
||||
|
||||
|
||||
def default(val, d):
|
||||
if exists(val):
|
||||
return val
|
||||
return d() if isfunction(d) else d
|
||||
|
||||
|
||||
def mean_flat(tensor):
|
||||
"""
|
||||
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
||||
Take the mean over all non-batch dimensions.
|
||||
"""
|
||||
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||||
|
||||
|
||||
def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
||||
return total_params
|
||||
|
||||
|
||||
def instantiate_from_config(config, **kwargs):
|
||||
if "target" not in config:
|
||||
if config == '__is_first_stage__':
|
||||
return None
|
||||
elif config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
return getattr(importlib.import_module(module, package=None), cls)
|
||||
|
||||
|
||||
class AdamWwithEMAandWings(optim.Optimizer):
|
||||
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
|
||||
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
|
||||
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
|
||||
ema_power=1., param_names=()):
|
||||
"""AdamW that saves EMA versions of the parameters."""
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
if not 0.0 <= weight_decay:
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
if not 0.0 <= ema_decay <= 1.0:
|
||||
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
||||
ema_power=ema_power, param_names=param_names)
|
||||
super().__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
super().__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('amsgrad', False)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
Args:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
params_with_grad = []
|
||||
grads = []
|
||||
exp_avgs = []
|
||||
exp_avg_sqs = []
|
||||
ema_params_with_grad = []
|
||||
state_sums = []
|
||||
max_exp_avg_sqs = []
|
||||
state_steps = []
|
||||
amsgrad = group['amsgrad']
|
||||
beta1, beta2 = group['betas']
|
||||
ema_decay = group['ema_decay']
|
||||
ema_power = group['ema_power']
|
||||
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
params_with_grad.append(p)
|
||||
if p.grad.is_sparse:
|
||||
raise RuntimeError('AdamW does not support sparse gradients')
|
||||
grads.append(p.grad)
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
if amsgrad:
|
||||
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
# Exponential moving average of parameter values
|
||||
state['param_exp_avg'] = p.detach().float().clone()
|
||||
|
||||
exp_avgs.append(state['exp_avg'])
|
||||
exp_avg_sqs.append(state['exp_avg_sq'])
|
||||
ema_params_with_grad.append(state['param_exp_avg'])
|
||||
|
||||
if amsgrad:
|
||||
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
||||
|
||||
# update the steps for each param group update
|
||||
state['step'] += 1
|
||||
# record the step after step update
|
||||
state_steps.append(state['step'])
|
||||
|
||||
optim._functional.adamw(params_with_grad,
|
||||
grads,
|
||||
exp_avgs,
|
||||
exp_avg_sqs,
|
||||
max_exp_avg_sqs,
|
||||
state_steps,
|
||||
amsgrad=amsgrad,
|
||||
beta1=beta1,
|
||||
beta2=beta2,
|
||||
lr=group['lr'],
|
||||
weight_decay=group['weight_decay'],
|
||||
eps=group['eps'],
|
||||
maximize=False)
|
||||
|
||||
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
|
||||
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
|
||||
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
|
||||
|
||||
return loss
|
52
iopaint/model/anytext/main.py
Normal file
52
iopaint/model/anytext/main.py
Normal file
@ -0,0 +1,52 @@
|
||||
from anytext_pipeline import AnyTextPipeline
|
||||
from utils import save_images
|
||||
|
||||
seed = 66273235
|
||||
# seed_everything(seed)
|
||||
|
||||
pipe = AnyTextPipeline(
|
||||
cfg_path="/Users/cwq/code/github/AnyText/anytext/models_yaMl/anytext_sd15.yaml",
|
||||
model_dir="/Users/cwq/.cache/modelscope/hub/damo/cv_anytext_text_generation_editing",
|
||||
# font_path="/Users/cwq/code/github/AnyText/anytext/font/Arial_Unicode.ttf",
|
||||
# font_path="/Users/cwq/code/github/AnyText/anytext/font/SourceHanSansSC-VF.ttf",
|
||||
font_path="/Users/cwq/code/github/AnyText/anytext/font/SourceHanSansSC-Medium.otf",
|
||||
use_fp16=False,
|
||||
device="mps",
|
||||
)
|
||||
|
||||
img_save_folder = "SaveImages"
|
||||
params = {
|
||||
"show_debug": True,
|
||||
"image_count": 2,
|
||||
"ddim_steps": 20,
|
||||
}
|
||||
|
||||
# # 1. text generation
|
||||
# mode = "text-generation"
|
||||
# input_data = {
|
||||
# "prompt": 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream',
|
||||
# "seed": seed,
|
||||
# "draw_pos": "/Users/cwq/code/github/AnyText/anytext/example_images/gen9.png",
|
||||
# }
|
||||
# results, rtn_code, rtn_warning, debug_info = pipe(input_data, mode=mode, **params)
|
||||
# if rtn_code >= 0:
|
||||
# save_images(results, img_save_folder)
|
||||
# print(f"Done, result images are saved in: {img_save_folder}")
|
||||
# if rtn_warning:
|
||||
# print(rtn_warning)
|
||||
#
|
||||
# exit()
|
||||
# 2. text editing
|
||||
mode = "text-editing"
|
||||
input_data = {
|
||||
"prompt": 'A cake with colorful characters that reads "EVERYDAY"',
|
||||
"seed": seed,
|
||||
"draw_pos": "/Users/cwq/code/github/AnyText/anytext/example_images/edit7.png",
|
||||
"ori_image": "/Users/cwq/code/github/AnyText/anytext/example_images/ref7.jpg",
|
||||
}
|
||||
results, rtn_code, rtn_warning, debug_info = pipe(input_data, mode=mode, **params)
|
||||
if rtn_code >= 0:
|
||||
save_images(results, img_save_folder)
|
||||
print(f"Done, result images are saved in: {img_save_folder}")
|
||||
if rtn_warning:
|
||||
print(rtn_warning)
|
210
iopaint/model/anytext/ocr_recog/RNN.py
Executable file
210
iopaint/model/anytext/ocr_recog/RNN.py
Executable file
@ -0,0 +1,210 @@
|
||||
from torch import nn
|
||||
import torch
|
||||
from .RecSVTR import Block
|
||||
|
||||
class Swish(nn.Module):
|
||||
def __int__(self):
|
||||
super(Swish, self).__int__()
|
||||
|
||||
def forward(self,x):
|
||||
return x*torch.sigmoid(x)
|
||||
|
||||
class Im2Im(nn.Module):
|
||||
def __init__(self, in_channels, **kwargs):
|
||||
super().__init__()
|
||||
self.out_channels = in_channels
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
class Im2Seq(nn.Module):
|
||||
def __init__(self, in_channels, **kwargs):
|
||||
super().__init__()
|
||||
self.out_channels = in_channels
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
# assert H == 1
|
||||
x = x.reshape(B, C, H * W)
|
||||
x = x.permute((0, 2, 1))
|
||||
return x
|
||||
|
||||
class EncoderWithRNN(nn.Module):
|
||||
def __init__(self, in_channels,**kwargs):
|
||||
super(EncoderWithRNN, self).__init__()
|
||||
hidden_size = kwargs.get('hidden_size', 256)
|
||||
self.out_channels = hidden_size * 2
|
||||
self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2,batch_first=True)
|
||||
|
||||
def forward(self, x):
|
||||
self.lstm.flatten_parameters()
|
||||
x, _ = self.lstm(x)
|
||||
return x
|
||||
|
||||
class SequenceEncoder(nn.Module):
|
||||
def __init__(self, in_channels, encoder_type='rnn', **kwargs):
|
||||
super(SequenceEncoder, self).__init__()
|
||||
self.encoder_reshape = Im2Seq(in_channels)
|
||||
self.out_channels = self.encoder_reshape.out_channels
|
||||
self.encoder_type = encoder_type
|
||||
if encoder_type == 'reshape':
|
||||
self.only_reshape = True
|
||||
else:
|
||||
support_encoder_dict = {
|
||||
'reshape': Im2Seq,
|
||||
'rnn': EncoderWithRNN,
|
||||
'svtr': EncoderWithSVTR
|
||||
}
|
||||
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
|
||||
encoder_type, support_encoder_dict.keys())
|
||||
|
||||
self.encoder = support_encoder_dict[encoder_type](
|
||||
self.encoder_reshape.out_channels,**kwargs)
|
||||
self.out_channels = self.encoder.out_channels
|
||||
self.only_reshape = False
|
||||
|
||||
def forward(self, x):
|
||||
if self.encoder_type != 'svtr':
|
||||
x = self.encoder_reshape(x)
|
||||
if not self.only_reshape:
|
||||
x = self.encoder(x)
|
||||
return x
|
||||
else:
|
||||
x = self.encoder(x)
|
||||
x = self.encoder_reshape(x)
|
||||
return x
|
||||
|
||||
class ConvBNLayer(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias_attr=False,
|
||||
groups=1,
|
||||
act=nn.GELU):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
groups=groups,
|
||||
# weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
|
||||
bias=bias_attr)
|
||||
self.norm = nn.BatchNorm2d(out_channels)
|
||||
self.act = Swish()
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv(inputs)
|
||||
out = self.norm(out)
|
||||
out = self.act(out)
|
||||
return out
|
||||
|
||||
|
||||
class EncoderWithSVTR(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
dims=64, # XS
|
||||
depth=2,
|
||||
hidden_dims=120,
|
||||
use_guide=False,
|
||||
num_heads=8,
|
||||
qkv_bias=True,
|
||||
mlp_ratio=2.0,
|
||||
drop_rate=0.1,
|
||||
attn_drop_rate=0.1,
|
||||
drop_path=0.,
|
||||
qk_scale=None):
|
||||
super(EncoderWithSVTR, self).__init__()
|
||||
self.depth = depth
|
||||
self.use_guide = use_guide
|
||||
self.conv1 = ConvBNLayer(
|
||||
in_channels, in_channels // 8, padding=1, act='swish')
|
||||
self.conv2 = ConvBNLayer(
|
||||
in_channels // 8, hidden_dims, kernel_size=1, act='swish')
|
||||
|
||||
self.svtr_block = nn.ModuleList([
|
||||
Block(
|
||||
dim=hidden_dims,
|
||||
num_heads=num_heads,
|
||||
mixer='Global',
|
||||
HW=None,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop=drop_rate,
|
||||
act_layer='swish',
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=drop_path,
|
||||
norm_layer='nn.LayerNorm',
|
||||
epsilon=1e-05,
|
||||
prenorm=False) for i in range(depth)
|
||||
])
|
||||
self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
|
||||
self.conv3 = ConvBNLayer(
|
||||
hidden_dims, in_channels, kernel_size=1, act='swish')
|
||||
# last conv-nxn, the input is concat of input tensor and conv3 output tensor
|
||||
self.conv4 = ConvBNLayer(
|
||||
2 * in_channels, in_channels // 8, padding=1, act='swish')
|
||||
|
||||
self.conv1x1 = ConvBNLayer(
|
||||
in_channels // 8, dims, kernel_size=1, act='swish')
|
||||
self.out_channels = dims
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
# weight initialization
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
||||
if m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.ones_(m.weight)
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
if m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.ConvTranspose2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
||||
if m.bias is not None:
|
||||
nn.init.zeros_(m.bias)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.ones_(m.weight)
|
||||
nn.init.zeros_(m.bias)
|
||||
|
||||
def forward(self, x):
|
||||
# for use guide
|
||||
if self.use_guide:
|
||||
z = x.clone()
|
||||
z.stop_gradient = True
|
||||
else:
|
||||
z = x
|
||||
# for short cut
|
||||
h = z
|
||||
# reduce dim
|
||||
z = self.conv1(z)
|
||||
z = self.conv2(z)
|
||||
# SVTR global block
|
||||
B, C, H, W = z.shape
|
||||
z = z.flatten(2).permute(0, 2, 1)
|
||||
|
||||
for blk in self.svtr_block:
|
||||
z = blk(z)
|
||||
|
||||
z = self.norm(z)
|
||||
# last stage
|
||||
z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2)
|
||||
z = self.conv3(z)
|
||||
z = torch.cat((h, z), dim=1)
|
||||
z = self.conv1x1(self.conv4(z))
|
||||
|
||||
return z
|
||||
|
||||
if __name__=="__main__":
|
||||
svtrRNN = EncoderWithSVTR(56)
|
||||
print(svtrRNN)
|
48
iopaint/model/anytext/ocr_recog/RecCTCHead.py
Executable file
48
iopaint/model/anytext/ocr_recog/RecCTCHead.py
Executable file
@ -0,0 +1,48 @@
|
||||
from torch import nn
|
||||
|
||||
|
||||
class CTCHead(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels=6625,
|
||||
fc_decay=0.0004,
|
||||
mid_channels=None,
|
||||
return_feats=False,
|
||||
**kwargs):
|
||||
super(CTCHead, self).__init__()
|
||||
if mid_channels is None:
|
||||
self.fc = nn.Linear(
|
||||
in_channels,
|
||||
out_channels,
|
||||
bias=True,)
|
||||
else:
|
||||
self.fc1 = nn.Linear(
|
||||
in_channels,
|
||||
mid_channels,
|
||||
bias=True,
|
||||
)
|
||||
self.fc2 = nn.Linear(
|
||||
mid_channels,
|
||||
out_channels,
|
||||
bias=True,
|
||||
)
|
||||
|
||||
self.out_channels = out_channels
|
||||
self.mid_channels = mid_channels
|
||||
self.return_feats = return_feats
|
||||
|
||||
def forward(self, x, labels=None):
|
||||
if self.mid_channels is None:
|
||||
predicts = self.fc(x)
|
||||
else:
|
||||
x = self.fc1(x)
|
||||
predicts = self.fc2(x)
|
||||
|
||||
if self.return_feats:
|
||||
result = dict()
|
||||
result['ctc'] = predicts
|
||||
result['ctc_neck'] = x
|
||||
else:
|
||||
result = predicts
|
||||
|
||||
return result
|
45
iopaint/model/anytext/ocr_recog/RecModel.py
Executable file
45
iopaint/model/anytext/ocr_recog/RecModel.py
Executable file
@ -0,0 +1,45 @@
|
||||
from torch import nn
|
||||
from .RNN import SequenceEncoder, Im2Seq, Im2Im
|
||||
from .RecMv1_enhance import MobileNetV1Enhance
|
||||
|
||||
from .RecCTCHead import CTCHead
|
||||
|
||||
backbone_dict = {"MobileNetV1Enhance":MobileNetV1Enhance}
|
||||
neck_dict = {'SequenceEncoder': SequenceEncoder, 'Im2Seq': Im2Seq,'None':Im2Im}
|
||||
head_dict = {'CTCHead':CTCHead}
|
||||
|
||||
|
||||
class RecModel(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
assert 'in_channels' in config, 'in_channels must in model config'
|
||||
backbone_type = config.backbone.pop('type')
|
||||
assert backbone_type in backbone_dict, f'backbone.type must in {backbone_dict}'
|
||||
self.backbone = backbone_dict[backbone_type](config.in_channels, **config.backbone)
|
||||
|
||||
neck_type = config.neck.pop('type')
|
||||
assert neck_type in neck_dict, f'neck.type must in {neck_dict}'
|
||||
self.neck = neck_dict[neck_type](self.backbone.out_channels, **config.neck)
|
||||
|
||||
head_type = config.head.pop('type')
|
||||
assert head_type in head_dict, f'head.type must in {head_dict}'
|
||||
self.head = head_dict[head_type](self.neck.out_channels, **config.head)
|
||||
|
||||
self.name = f'RecModel_{backbone_type}_{neck_type}_{head_type}'
|
||||
|
||||
def load_3rd_state_dict(self, _3rd_name, _state):
|
||||
self.backbone.load_3rd_state_dict(_3rd_name, _state)
|
||||
self.neck.load_3rd_state_dict(_3rd_name, _state)
|
||||
self.head.load_3rd_state_dict(_3rd_name, _state)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.backbone(x)
|
||||
x = self.neck(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def encode(self, x):
|
||||
x = self.backbone(x)
|
||||
x = self.neck(x)
|
||||
x = self.head.ctc_encoder(x)
|
||||
return x
|
232
iopaint/model/anytext/ocr_recog/RecMv1_enhance.py
Normal file
232
iopaint/model/anytext/ocr_recog/RecMv1_enhance.py
Normal file
@ -0,0 +1,232 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .common import Activation
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Module):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
filter_size,
|
||||
num_filters,
|
||||
stride,
|
||||
padding,
|
||||
channels=None,
|
||||
num_groups=1,
|
||||
act='hard_swish'):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
self.act = act
|
||||
self._conv = nn.Conv2d(
|
||||
in_channels=num_channels,
|
||||
out_channels=num_filters,
|
||||
kernel_size=filter_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
groups=num_groups,
|
||||
bias=False)
|
||||
|
||||
self._batch_norm = nn.BatchNorm2d(
|
||||
num_filters,
|
||||
)
|
||||
if self.act is not None:
|
||||
self._act = Activation(act_type=act, inplace=True)
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self._conv(inputs)
|
||||
y = self._batch_norm(y)
|
||||
if self.act is not None:
|
||||
y = self._act(y)
|
||||
return y
|
||||
|
||||
|
||||
class DepthwiseSeparable(nn.Module):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters1,
|
||||
num_filters2,
|
||||
num_groups,
|
||||
stride,
|
||||
scale,
|
||||
dw_size=3,
|
||||
padding=1,
|
||||
use_se=False):
|
||||
super(DepthwiseSeparable, self).__init__()
|
||||
self.use_se = use_se
|
||||
self._depthwise_conv = ConvBNLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=int(num_filters1 * scale),
|
||||
filter_size=dw_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
num_groups=int(num_groups * scale))
|
||||
if use_se:
|
||||
self._se = SEModule(int(num_filters1 * scale))
|
||||
self._pointwise_conv = ConvBNLayer(
|
||||
num_channels=int(num_filters1 * scale),
|
||||
filter_size=1,
|
||||
num_filters=int(num_filters2 * scale),
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self._depthwise_conv(inputs)
|
||||
if self.use_se:
|
||||
y = self._se(y)
|
||||
y = self._pointwise_conv(y)
|
||||
return y
|
||||
|
||||
|
||||
class MobileNetV1Enhance(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels=3,
|
||||
scale=0.5,
|
||||
last_conv_stride=1,
|
||||
last_pool_type='max',
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
self.scale = scale
|
||||
self.block_list = []
|
||||
|
||||
self.conv1 = ConvBNLayer(
|
||||
num_channels=in_channels,
|
||||
filter_size=3,
|
||||
channels=3,
|
||||
num_filters=int(32 * scale),
|
||||
stride=2,
|
||||
padding=1)
|
||||
|
||||
conv2_1 = DepthwiseSeparable(
|
||||
num_channels=int(32 * scale),
|
||||
num_filters1=32,
|
||||
num_filters2=64,
|
||||
num_groups=32,
|
||||
stride=1,
|
||||
scale=scale)
|
||||
self.block_list.append(conv2_1)
|
||||
|
||||
conv2_2 = DepthwiseSeparable(
|
||||
num_channels=int(64 * scale),
|
||||
num_filters1=64,
|
||||
num_filters2=128,
|
||||
num_groups=64,
|
||||
stride=1,
|
||||
scale=scale)
|
||||
self.block_list.append(conv2_2)
|
||||
|
||||
conv3_1 = DepthwiseSeparable(
|
||||
num_channels=int(128 * scale),
|
||||
num_filters1=128,
|
||||
num_filters2=128,
|
||||
num_groups=128,
|
||||
stride=1,
|
||||
scale=scale)
|
||||
self.block_list.append(conv3_1)
|
||||
|
||||
conv3_2 = DepthwiseSeparable(
|
||||
num_channels=int(128 * scale),
|
||||
num_filters1=128,
|
||||
num_filters2=256,
|
||||
num_groups=128,
|
||||
stride=(2, 1),
|
||||
scale=scale)
|
||||
self.block_list.append(conv3_2)
|
||||
|
||||
conv4_1 = DepthwiseSeparable(
|
||||
num_channels=int(256 * scale),
|
||||
num_filters1=256,
|
||||
num_filters2=256,
|
||||
num_groups=256,
|
||||
stride=1,
|
||||
scale=scale)
|
||||
self.block_list.append(conv4_1)
|
||||
|
||||
conv4_2 = DepthwiseSeparable(
|
||||
num_channels=int(256 * scale),
|
||||
num_filters1=256,
|
||||
num_filters2=512,
|
||||
num_groups=256,
|
||||
stride=(2, 1),
|
||||
scale=scale)
|
||||
self.block_list.append(conv4_2)
|
||||
|
||||
for _ in range(5):
|
||||
conv5 = DepthwiseSeparable(
|
||||
num_channels=int(512 * scale),
|
||||
num_filters1=512,
|
||||
num_filters2=512,
|
||||
num_groups=512,
|
||||
stride=1,
|
||||
dw_size=5,
|
||||
padding=2,
|
||||
scale=scale,
|
||||
use_se=False)
|
||||
self.block_list.append(conv5)
|
||||
|
||||
conv5_6 = DepthwiseSeparable(
|
||||
num_channels=int(512 * scale),
|
||||
num_filters1=512,
|
||||
num_filters2=1024,
|
||||
num_groups=512,
|
||||
stride=(2, 1),
|
||||
dw_size=5,
|
||||
padding=2,
|
||||
scale=scale,
|
||||
use_se=True)
|
||||
self.block_list.append(conv5_6)
|
||||
|
||||
conv6 = DepthwiseSeparable(
|
||||
num_channels=int(1024 * scale),
|
||||
num_filters1=1024,
|
||||
num_filters2=1024,
|
||||
num_groups=1024,
|
||||
stride=last_conv_stride,
|
||||
dw_size=5,
|
||||
padding=2,
|
||||
use_se=True,
|
||||
scale=scale)
|
||||
self.block_list.append(conv6)
|
||||
|
||||
self.block_list = nn.Sequential(*self.block_list)
|
||||
if last_pool_type == 'avg':
|
||||
self.pool = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else:
|
||||
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
||||
self.out_channels = int(1024 * scale)
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv1(inputs)
|
||||
y = self.block_list(y)
|
||||
y = self.pool(y)
|
||||
return y
|
||||
|
||||
def hardsigmoid(x):
|
||||
return F.relu6(x + 3., inplace=True) / 6.
|
||||
|
||||
class SEModule(nn.Module):
|
||||
def __init__(self, channel, reduction=4):
|
||||
super(SEModule, self).__init__()
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=channel,
|
||||
out_channels=channel // reduction,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=True)
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=channel // reduction,
|
||||
out_channels=channel,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=True)
|
||||
|
||||
def forward(self, inputs):
|
||||
outputs = self.avg_pool(inputs)
|
||||
outputs = self.conv1(outputs)
|
||||
outputs = F.relu(outputs)
|
||||
outputs = self.conv2(outputs)
|
||||
outputs = hardsigmoid(outputs)
|
||||
x = torch.mul(inputs, outputs)
|
||||
|
||||
return x
|
591
iopaint/model/anytext/ocr_recog/RecSVTR.py
Normal file
591
iopaint/model/anytext/ocr_recog/RecSVTR.py
Normal file
@ -0,0 +1,591 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from torch.nn.init import trunc_normal_, zeros_, ones_
|
||||
from torch.nn import functional
|
||||
|
||||
|
||||
def drop_path(x, drop_prob=0., training=False):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = torch.tensor(1 - drop_prob)
|
||||
shape = (x.size()[0], ) + (1, ) * (x.ndim - 1)
|
||||
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype)
|
||||
random_tensor = torch.floor(random_tensor) # binarize
|
||||
output = x.divide(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class Swish(nn.Module):
|
||||
def __int__(self):
|
||||
super(Swish, self).__int__()
|
||||
|
||||
def forward(self,x):
|
||||
return x*torch.sigmoid(x)
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias_attr=False,
|
||||
groups=1,
|
||||
act=nn.GELU):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
groups=groups,
|
||||
# weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
|
||||
bias=bias_attr)
|
||||
self.norm = nn.BatchNorm2d(out_channels)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv(inputs)
|
||||
out = self.norm(out)
|
||||
out = self.act(out)
|
||||
return out
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
class Identity(nn.Module):
|
||||
def __init__(self):
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, input):
|
||||
return input
|
||||
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
if isinstance(act_layer, str):
|
||||
self.act = Swish()
|
||||
else:
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvMixer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
HW=(8, 25),
|
||||
local_k=(3, 3), ):
|
||||
super().__init__()
|
||||
self.HW = HW
|
||||
self.dim = dim
|
||||
self.local_mixer = nn.Conv2d(
|
||||
dim,
|
||||
dim,
|
||||
local_k,
|
||||
1, (local_k[0] // 2, local_k[1] // 2),
|
||||
groups=num_heads,
|
||||
# weight_attr=ParamAttr(initializer=KaimingNormal())
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
h = self.HW[0]
|
||||
w = self.HW[1]
|
||||
x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w])
|
||||
x = self.local_mixer(x)
|
||||
x = x.flatten(2).transpose([0, 2, 1])
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
mixer='Global',
|
||||
HW=(8, 25),
|
||||
local_k=(7, 11),
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
attn_drop=0.,
|
||||
proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.HW = HW
|
||||
if HW is not None:
|
||||
H = HW[0]
|
||||
W = HW[1]
|
||||
self.N = H * W
|
||||
self.C = dim
|
||||
if mixer == 'Local' and HW is not None:
|
||||
hk = local_k[0]
|
||||
wk = local_k[1]
|
||||
mask = torch.ones([H * W, H + hk - 1, W + wk - 1])
|
||||
for h in range(0, H):
|
||||
for w in range(0, W):
|
||||
mask[h * W + w, h:h + hk, w:w + wk] = 0.
|
||||
mask_paddle = mask[:, hk // 2:H + hk // 2, wk // 2:W + wk //
|
||||
2].flatten(1)
|
||||
mask_inf = torch.full([H * W, H * W],fill_value=float('-inf'))
|
||||
mask = torch.where(mask_paddle < 1, mask_paddle, mask_inf)
|
||||
self.mask = mask[None,None,:]
|
||||
# self.mask = mask.unsqueeze([0, 1])
|
||||
self.mixer = mixer
|
||||
|
||||
def forward(self, x):
|
||||
if self.HW is not None:
|
||||
N = self.N
|
||||
C = self.C
|
||||
else:
|
||||
_, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //self.num_heads)).permute((2, 0, 3, 1, 4))
|
||||
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
||||
|
||||
attn = (q.matmul(k.permute((0, 1, 3, 2))))
|
||||
if self.mixer == 'Local':
|
||||
attn += self.mask
|
||||
attn = functional.softmax(attn, dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn.matmul(v)).permute((0, 2, 1, 3)).reshape((-1, N, C))
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads,
|
||||
mixer='Global',
|
||||
local_mixer=(7, 11),
|
||||
HW=(8, 25),
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
drop=0.,
|
||||
attn_drop=0.,
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer='nn.LayerNorm',
|
||||
epsilon=1e-6,
|
||||
prenorm=True):
|
||||
super().__init__()
|
||||
if isinstance(norm_layer, str):
|
||||
self.norm1 = eval(norm_layer)(dim, eps=epsilon)
|
||||
else:
|
||||
self.norm1 = norm_layer(dim)
|
||||
if mixer == 'Global' or mixer == 'Local':
|
||||
|
||||
self.mixer = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
mixer=mixer,
|
||||
HW=HW,
|
||||
local_k=local_mixer,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop)
|
||||
elif mixer == 'Conv':
|
||||
self.mixer = ConvMixer(
|
||||
dim, num_heads=num_heads, HW=HW, local_k=local_mixer)
|
||||
else:
|
||||
raise TypeError("The mixer must be one of [Global, Local, Conv]")
|
||||
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
|
||||
if isinstance(norm_layer, str):
|
||||
self.norm2 = eval(norm_layer)(dim, eps=epsilon)
|
||||
else:
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
self.mlp = Mlp(in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop)
|
||||
self.prenorm = prenorm
|
||||
|
||||
def forward(self, x):
|
||||
if self.prenorm:
|
||||
x = self.norm1(x + self.drop_path(self.mixer(x)))
|
||||
x = self.norm2(x + self.drop_path(self.mlp(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
""" Image to Patch Embedding
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
img_size=(32, 100),
|
||||
in_channels=3,
|
||||
embed_dim=768,
|
||||
sub_num=2):
|
||||
super().__init__()
|
||||
num_patches = (img_size[1] // (2 ** sub_num)) * \
|
||||
(img_size[0] // (2 ** sub_num))
|
||||
self.img_size = img_size
|
||||
self.num_patches = num_patches
|
||||
self.embed_dim = embed_dim
|
||||
self.norm = None
|
||||
if sub_num == 2:
|
||||
self.proj = nn.Sequential(
|
||||
ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=embed_dim // 2,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
act=nn.GELU,
|
||||
bias_attr=False),
|
||||
ConvBNLayer(
|
||||
in_channels=embed_dim // 2,
|
||||
out_channels=embed_dim,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
act=nn.GELU,
|
||||
bias_attr=False))
|
||||
if sub_num == 3:
|
||||
self.proj = nn.Sequential(
|
||||
ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=embed_dim // 4,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
act=nn.GELU,
|
||||
bias_attr=False),
|
||||
ConvBNLayer(
|
||||
in_channels=embed_dim // 4,
|
||||
out_channels=embed_dim // 2,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
act=nn.GELU,
|
||||
bias_attr=False),
|
||||
ConvBNLayer(
|
||||
in_channels=embed_dim // 2,
|
||||
out_channels=embed_dim,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
act=nn.GELU,
|
||||
bias_attr=False))
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
x = self.proj(x).flatten(2).permute(0, 2, 1)
|
||||
return x
|
||||
|
||||
|
||||
class SubSample(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
types='Pool',
|
||||
stride=(2, 1),
|
||||
sub_norm='nn.LayerNorm',
|
||||
act=None):
|
||||
super().__init__()
|
||||
self.types = types
|
||||
if types == 'Pool':
|
||||
self.avgpool = nn.AvgPool2d(
|
||||
kernel_size=(3, 5), stride=stride, padding=(1, 2))
|
||||
self.maxpool = nn.MaxPool2d(
|
||||
kernel_size=(3, 5), stride=stride, padding=(1, 2))
|
||||
self.proj = nn.Linear(in_channels, out_channels)
|
||||
else:
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
stride=stride,
|
||||
padding=1,
|
||||
# weight_attr=ParamAttr(initializer=KaimingNormal())
|
||||
)
|
||||
self.norm = eval(sub_norm)(out_channels)
|
||||
if act is not None:
|
||||
self.act = act()
|
||||
else:
|
||||
self.act = None
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
if self.types == 'Pool':
|
||||
x1 = self.avgpool(x)
|
||||
x2 = self.maxpool(x)
|
||||
x = (x1 + x2) * 0.5
|
||||
out = self.proj(x.flatten(2).permute((0, 2, 1)))
|
||||
else:
|
||||
x = self.conv(x)
|
||||
out = x.flatten(2).permute((0, 2, 1))
|
||||
out = self.norm(out)
|
||||
if self.act is not None:
|
||||
out = self.act(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class SVTRNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
img_size=[48, 100],
|
||||
in_channels=3,
|
||||
embed_dim=[64, 128, 256],
|
||||
depth=[3, 6, 3],
|
||||
num_heads=[2, 4, 8],
|
||||
mixer=['Local'] * 6 + ['Global'] *
|
||||
6, # Local atten, Global atten, Conv
|
||||
local_mixer=[[7, 11], [7, 11], [7, 11]],
|
||||
patch_merging='Conv', # Conv, Pool, None
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
drop_rate=0.,
|
||||
last_drop=0.1,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.1,
|
||||
norm_layer='nn.LayerNorm',
|
||||
sub_norm='nn.LayerNorm',
|
||||
epsilon=1e-6,
|
||||
out_channels=192,
|
||||
out_char_num=25,
|
||||
block_unit='Block',
|
||||
act='nn.GELU',
|
||||
last_stage=True,
|
||||
sub_num=2,
|
||||
prenorm=True,
|
||||
use_lenhead=False,
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.embed_dim = embed_dim
|
||||
self.out_channels = out_channels
|
||||
self.prenorm = prenorm
|
||||
patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size,
|
||||
in_channels=in_channels,
|
||||
embed_dim=embed_dim[0],
|
||||
sub_num=sub_num)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)]
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim[0]))
|
||||
# self.pos_embed = self.create_parameter(
|
||||
# shape=[1, num_patches, embed_dim[0]], default_initializer=zeros_)
|
||||
|
||||
# self.add_parameter("pos_embed", self.pos_embed)
|
||||
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
Block_unit = eval(block_unit)
|
||||
|
||||
dpr = np.linspace(0, drop_path_rate, sum(depth))
|
||||
self.blocks1 = nn.ModuleList(
|
||||
[
|
||||
Block_unit(
|
||||
dim=embed_dim[0],
|
||||
num_heads=num_heads[0],
|
||||
mixer=mixer[0:depth[0]][i],
|
||||
HW=self.HW,
|
||||
local_mixer=local_mixer[0],
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop=drop_rate,
|
||||
act_layer=eval(act),
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[0:depth[0]][i],
|
||||
norm_layer=norm_layer,
|
||||
epsilon=epsilon,
|
||||
prenorm=prenorm) for i in range(depth[0])
|
||||
]
|
||||
)
|
||||
if patch_merging is not None:
|
||||
self.sub_sample1 = SubSample(
|
||||
embed_dim[0],
|
||||
embed_dim[1],
|
||||
sub_norm=sub_norm,
|
||||
stride=[2, 1],
|
||||
types=patch_merging)
|
||||
HW = [self.HW[0] // 2, self.HW[1]]
|
||||
else:
|
||||
HW = self.HW
|
||||
self.patch_merging = patch_merging
|
||||
self.blocks2 = nn.ModuleList([
|
||||
Block_unit(
|
||||
dim=embed_dim[1],
|
||||
num_heads=num_heads[1],
|
||||
mixer=mixer[depth[0]:depth[0] + depth[1]][i],
|
||||
HW=HW,
|
||||
local_mixer=local_mixer[1],
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop=drop_rate,
|
||||
act_layer=eval(act),
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[depth[0]:depth[0] + depth[1]][i],
|
||||
norm_layer=norm_layer,
|
||||
epsilon=epsilon,
|
||||
prenorm=prenorm) for i in range(depth[1])
|
||||
])
|
||||
if patch_merging is not None:
|
||||
self.sub_sample2 = SubSample(
|
||||
embed_dim[1],
|
||||
embed_dim[2],
|
||||
sub_norm=sub_norm,
|
||||
stride=[2, 1],
|
||||
types=patch_merging)
|
||||
HW = [self.HW[0] // 4, self.HW[1]]
|
||||
else:
|
||||
HW = self.HW
|
||||
self.blocks3 = nn.ModuleList([
|
||||
Block_unit(
|
||||
dim=embed_dim[2],
|
||||
num_heads=num_heads[2],
|
||||
mixer=mixer[depth[0] + depth[1]:][i],
|
||||
HW=HW,
|
||||
local_mixer=local_mixer[2],
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop=drop_rate,
|
||||
act_layer=eval(act),
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[depth[0] + depth[1]:][i],
|
||||
norm_layer=norm_layer,
|
||||
epsilon=epsilon,
|
||||
prenorm=prenorm) for i in range(depth[2])
|
||||
])
|
||||
self.last_stage = last_stage
|
||||
if last_stage:
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d((1, out_char_num))
|
||||
self.last_conv = nn.Conv2d(
|
||||
in_channels=embed_dim[2],
|
||||
out_channels=self.out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0,
|
||||
bias=False)
|
||||
self.hardswish = nn.Hardswish()
|
||||
self.dropout = nn.Dropout(p=last_drop)
|
||||
if not prenorm:
|
||||
self.norm = eval(norm_layer)(embed_dim[-1], epsilon=epsilon)
|
||||
self.use_lenhead = use_lenhead
|
||||
if use_lenhead:
|
||||
self.len_conv = nn.Linear(embed_dim[2], self.out_channels)
|
||||
self.hardswish_len = nn.Hardswish()
|
||||
self.dropout_len = nn.Dropout(
|
||||
p=last_drop)
|
||||
|
||||
trunc_normal_(self.pos_embed,std=.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight,std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
zeros_(m.bias)
|
||||
ones_(m.weight)
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
x = x + self.pos_embed
|
||||
x = self.pos_drop(x)
|
||||
for blk in self.blocks1:
|
||||
x = blk(x)
|
||||
if self.patch_merging is not None:
|
||||
x = self.sub_sample1(
|
||||
x.permute([0, 2, 1]).reshape(
|
||||
[-1, self.embed_dim[0], self.HW[0], self.HW[1]]))
|
||||
for blk in self.blocks2:
|
||||
x = blk(x)
|
||||
if self.patch_merging is not None:
|
||||
x = self.sub_sample2(
|
||||
x.permute([0, 2, 1]).reshape(
|
||||
[-1, self.embed_dim[1], self.HW[0] // 2, self.HW[1]]))
|
||||
for blk in self.blocks3:
|
||||
x = blk(x)
|
||||
if not self.prenorm:
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
if self.use_lenhead:
|
||||
len_x = self.len_conv(x.mean(1))
|
||||
len_x = self.dropout_len(self.hardswish_len(len_x))
|
||||
if self.last_stage:
|
||||
if self.patch_merging is not None:
|
||||
h = self.HW[0] // 4
|
||||
else:
|
||||
h = self.HW[0]
|
||||
x = self.avg_pool(
|
||||
x.permute([0, 2, 1]).reshape(
|
||||
[-1, self.embed_dim[2], h, self.HW[1]]))
|
||||
x = self.last_conv(x)
|
||||
x = self.hardswish(x)
|
||||
x = self.dropout(x)
|
||||
if self.use_lenhead:
|
||||
return x, len_x
|
||||
return x
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = torch.rand(1,3,48,100)
|
||||
svtr = SVTRNet()
|
||||
|
||||
out = svtr(a)
|
||||
print(svtr)
|
||||
print(out.size())
|
74
iopaint/model/anytext/ocr_recog/common.py
Normal file
74
iopaint/model/anytext/ocr_recog/common.py
Normal file
@ -0,0 +1,74 @@
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Hswish(nn.Module):
|
||||
def __init__(self, inplace=True):
|
||||
super(Hswish, self).__init__()
|
||||
self.inplace = inplace
|
||||
|
||||
def forward(self, x):
|
||||
return x * F.relu6(x + 3., inplace=self.inplace) / 6.
|
||||
|
||||
# out = max(0, min(1, slop*x+offset))
|
||||
# paddle.fluid.layers.hard_sigmoid(x, slope=0.2, offset=0.5, name=None)
|
||||
class Hsigmoid(nn.Module):
|
||||
def __init__(self, inplace=True):
|
||||
super(Hsigmoid, self).__init__()
|
||||
self.inplace = inplace
|
||||
|
||||
def forward(self, x):
|
||||
# torch: F.relu6(x + 3., inplace=self.inplace) / 6.
|
||||
# paddle: F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
|
||||
return F.relu6(1.2 * x + 3., inplace=self.inplace) / 6.
|
||||
|
||||
class GELU(nn.Module):
|
||||
def __init__(self, inplace=True):
|
||||
super(GELU, self).__init__()
|
||||
self.inplace = inplace
|
||||
|
||||
def forward(self, x):
|
||||
return torch.nn.functional.gelu(x)
|
||||
|
||||
|
||||
class Swish(nn.Module):
|
||||
def __init__(self, inplace=True):
|
||||
super(Swish, self).__init__()
|
||||
self.inplace = inplace
|
||||
|
||||
def forward(self, x):
|
||||
if self.inplace:
|
||||
x.mul_(torch.sigmoid(x))
|
||||
return x
|
||||
else:
|
||||
return x*torch.sigmoid(x)
|
||||
|
||||
|
||||
class Activation(nn.Module):
|
||||
def __init__(self, act_type, inplace=True):
|
||||
super(Activation, self).__init__()
|
||||
act_type = act_type.lower()
|
||||
if act_type == 'relu':
|
||||
self.act = nn.ReLU(inplace=inplace)
|
||||
elif act_type == 'relu6':
|
||||
self.act = nn.ReLU6(inplace=inplace)
|
||||
elif act_type == 'sigmoid':
|
||||
raise NotImplementedError
|
||||
elif act_type == 'hard_sigmoid':
|
||||
self.act = Hsigmoid(inplace)
|
||||
elif act_type == 'hard_swish':
|
||||
self.act = Hswish(inplace=inplace)
|
||||
elif act_type == 'leakyrelu':
|
||||
self.act = nn.LeakyReLU(inplace=inplace)
|
||||
elif act_type == 'gelu':
|
||||
self.act = GELU(inplace=inplace)
|
||||
elif act_type == 'swish':
|
||||
self.act = Swish(inplace=inplace)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def forward(self, inputs):
|
||||
return self.act(inputs)
|
95
iopaint/model/anytext/ocr_recog/en_dict.txt
Normal file
95
iopaint/model/anytext/ocr_recog/en_dict.txt
Normal file
@ -0,0 +1,95 @@
|
||||
0
|
||||
1
|
||||
2
|
||||
3
|
||||
4
|
||||
5
|
||||
6
|
||||
7
|
||||
8
|
||||
9
|
||||
:
|
||||
;
|
||||
<
|
||||
=
|
||||
>
|
||||
?
|
||||
@
|
||||
A
|
||||
B
|
||||
C
|
||||
D
|
||||
E
|
||||
F
|
||||
G
|
||||
H
|
||||
I
|
||||
J
|
||||
K
|
||||
L
|
||||
M
|
||||
N
|
||||
O
|
||||
P
|
||||
Q
|
||||
R
|
||||
S
|
||||
T
|
||||
U
|
||||
V
|
||||
W
|
||||
X
|
||||
Y
|
||||
Z
|
||||
[
|
||||
\
|
||||
]
|
||||
^
|
||||
_
|
||||
`
|
||||
a
|
||||
b
|
||||
c
|
||||
d
|
||||
e
|
||||
f
|
||||
g
|
||||
h
|
||||
i
|
||||
j
|
||||
k
|
||||
l
|
||||
m
|
||||
n
|
||||
o
|
||||
p
|
||||
q
|
||||
r
|
||||
s
|
||||
t
|
||||
u
|
||||
v
|
||||
w
|
||||
x
|
||||
y
|
||||
z
|
||||
{
|
||||
|
|
||||
}
|
||||
~
|
||||
!
|
||||
"
|
||||
#
|
||||
$
|
||||
%
|
||||
&
|
||||
'
|
||||
(
|
||||
)
|
||||
*
|
||||
+
|
||||
,
|
||||
-
|
||||
.
|
||||
/
|
||||
|
6623
iopaint/model/anytext/ocr_recog/ppocr_keys_v1.txt
Normal file
6623
iopaint/model/anytext/ocr_recog/ppocr_keys_v1.txt
Normal file
File diff suppressed because it is too large
Load Diff
151
iopaint/model/anytext/utils.py
Normal file
151
iopaint/model/anytext/utils.py
Normal file
@ -0,0 +1,151 @@
|
||||
import os
|
||||
import datetime
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
|
||||
def save_images(img_list, folder):
|
||||
if not os.path.exists(folder):
|
||||
os.makedirs(folder)
|
||||
now = datetime.datetime.now()
|
||||
date_str = now.strftime("%Y-%m-%d")
|
||||
folder_path = os.path.join(folder, date_str)
|
||||
if not os.path.exists(folder_path):
|
||||
os.makedirs(folder_path)
|
||||
time_str = now.strftime("%H_%M_%S")
|
||||
for idx, img in enumerate(img_list):
|
||||
image_number = idx + 1
|
||||
filename = f"{time_str}_{image_number}.jpg"
|
||||
save_path = os.path.join(folder_path, filename)
|
||||
cv2.imwrite(save_path, img[..., ::-1])
|
||||
|
||||
|
||||
def check_channels(image):
|
||||
channels = image.shape[2] if len(image.shape) == 3 else 1
|
||||
if channels == 1:
|
||||
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
||||
elif channels > 3:
|
||||
image = image[:, :, :3]
|
||||
return image
|
||||
|
||||
|
||||
def resize_image(img, max_length=768):
|
||||
height, width = img.shape[:2]
|
||||
max_dimension = max(height, width)
|
||||
|
||||
if max_dimension > max_length:
|
||||
scale_factor = max_length / max_dimension
|
||||
new_width = int(round(width * scale_factor))
|
||||
new_height = int(round(height * scale_factor))
|
||||
new_size = (new_width, new_height)
|
||||
img = cv2.resize(img, new_size)
|
||||
height, width = img.shape[:2]
|
||||
img = cv2.resize(img, (width - (width % 64), height - (height % 64)))
|
||||
return img
|
||||
|
||||
|
||||
def insert_spaces(string, nSpace):
|
||||
if nSpace == 0:
|
||||
return string
|
||||
new_string = ""
|
||||
for char in string:
|
||||
new_string += char + " " * nSpace
|
||||
return new_string[:-nSpace]
|
||||
|
||||
|
||||
def draw_glyph(font, text):
|
||||
g_size = 50
|
||||
W, H = (512, 80)
|
||||
new_font = font.font_variant(size=g_size)
|
||||
img = Image.new(mode="1", size=(W, H), color=0)
|
||||
draw = ImageDraw.Draw(img)
|
||||
left, top, right, bottom = new_font.getbbox(text)
|
||||
text_width = max(right - left, 5)
|
||||
text_height = max(bottom - top, 5)
|
||||
ratio = min(W * 0.9 / text_width, H * 0.9 / text_height)
|
||||
new_font = font.font_variant(size=int(g_size * ratio))
|
||||
|
||||
text_width, text_height = new_font.getsize(text)
|
||||
offset_x, offset_y = new_font.getoffset(text)
|
||||
x = (img.width - text_width) // 2
|
||||
y = (img.height - text_height) // 2 - offset_y // 2
|
||||
draw.text((x, y), text, font=new_font, fill="white")
|
||||
img = np.expand_dims(np.array(img), axis=2).astype(np.float64)
|
||||
return img
|
||||
|
||||
|
||||
def draw_glyph2(
|
||||
font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True
|
||||
):
|
||||
enlarge_polygon = polygon * scale
|
||||
rect = cv2.minAreaRect(enlarge_polygon)
|
||||
box = cv2.boxPoints(rect)
|
||||
box = np.int0(box)
|
||||
w, h = rect[1]
|
||||
angle = rect[2]
|
||||
if angle < -45:
|
||||
angle += 90
|
||||
angle = -angle
|
||||
if w < h:
|
||||
angle += 90
|
||||
|
||||
vert = False
|
||||
if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng:
|
||||
_w = max(box[:, 0]) - min(box[:, 0])
|
||||
_h = max(box[:, 1]) - min(box[:, 1])
|
||||
if _h >= _w:
|
||||
vert = True
|
||||
angle = 0
|
||||
|
||||
img = np.zeros((height * scale, width * scale, 3), np.uint8)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
# infer font size
|
||||
image4ratio = Image.new("RGB", img.size, "white")
|
||||
draw = ImageDraw.Draw(image4ratio)
|
||||
_, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font)
|
||||
text_w = min(w, h) * (_tw / _th)
|
||||
if text_w <= max(w, h):
|
||||
# add space
|
||||
if len(text) > 1 and not vert and add_space:
|
||||
for i in range(1, 100):
|
||||
text_space = insert_spaces(text, i)
|
||||
_, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font)
|
||||
if min(w, h) * (_tw2 / _th2) > max(w, h):
|
||||
break
|
||||
text = insert_spaces(text, i - 1)
|
||||
font_size = min(w, h) * 0.80
|
||||
else:
|
||||
shrink = 0.75 if vert else 0.85
|
||||
font_size = min(w, h) / (text_w / max(w, h)) * shrink
|
||||
new_font = font.font_variant(size=int(font_size))
|
||||
|
||||
left, top, right, bottom = new_font.getbbox(text)
|
||||
text_width = right - left
|
||||
text_height = bottom - top
|
||||
|
||||
layer = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
||||
draw = ImageDraw.Draw(layer)
|
||||
if not vert:
|
||||
draw.text(
|
||||
(rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top),
|
||||
text,
|
||||
font=new_font,
|
||||
fill=(255, 255, 255, 255),
|
||||
)
|
||||
else:
|
||||
x_s = min(box[:, 0]) + _w // 2 - text_height // 2
|
||||
y_s = min(box[:, 1])
|
||||
for c in text:
|
||||
draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255))
|
||||
_, _t, _, _b = new_font.getbbox(c)
|
||||
y_s += _b
|
||||
|
||||
rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1]))
|
||||
|
||||
x_offset = int((img.width - rotated_layer.width) / 2)
|
||||
y_offset = int((img.height - rotated_layer.height) / 2)
|
||||
img.paste(rotated_layer, (x_offset, y_offset), rotated_layer)
|
||||
img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64)
|
||||
return img
|
Loading…
Reference in New Issue
Block a user