anything-llm/server/utils/AiProviders/azureOpenAi/index.js

100 lines
2.9 KiB
JavaScript
Raw Normal View History

class AzureOpenAi {
constructor() {
const { OpenAIClient, AzureKeyCredential } = require("@azure/openai");
const openai = new OpenAIClient(
process.env.AZURE_OPENAI_ENDPOINT,
new AzureKeyCredential(process.env.AZURE_OPENAI_KEY)
);
this.openai = openai;
}
isValidChatModel(_modelName = "") {
// The Azure user names their "models" as deployments and they can be any name
// so we rely on the user to put in the correct deployment as only they would
// know it.
return true;
}
async isSafe(_input = "") {
// Not implemented by Azure OpenAI so must be stubbed
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}) {
const model = process.env.OPEN_MODEL_PREF;
if (!model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const textResponse = await this.openai
.getChatCompletions(
model,
[
{ role: "system", content: "" },
...chatHistory,
{ role: "user", content: prompt },
],
{
temperature: Number(workspace?.openAiTemp ?? 0.7),
n: 1,
}
)
.then((res) => {
if (!res.hasOwnProperty("choices"))
throw new Error("OpenAI chat: No results!");
if (res.choices.length === 0)
throw new Error("OpenAI chat: No results length!");
return res.choices[0].message.content;
})
.catch((error) => {
console.log(error);
throw new Error(
`AzureOpenAI::getChatCompletions failed with: ${error.message}`
);
});
return textResponse;
}
async getChatCompletion(messages = [], { temperature = 0.7 }) {
const model = process.env.OPEN_MODEL_PREF;
if (!model)
throw new Error(
"No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5."
);
const data = await this.openai.getChatCompletions(model, messages, {
temperature,
});
if (!data.hasOwnProperty("choices")) return null;
return data.choices[0].message.content;
}
async embedTextInput(textInput) {
const result = await this.embedChunks(textInput);
return result?.[0] || [];
}
async embedChunks(textChunks = []) {
const textEmbeddingModel =
process.env.EMBEDDING_MODEL_PREF || "text-embedding-ada-002";
if (!textEmbeddingModel)
throw new Error(
"No EMBEDDING_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an embedding model."
);
const { data = [] } = await this.openai.getEmbeddings(
textEmbeddingModel,
textChunks
);
return data.length > 0 &&
data.every((embd) => embd.hasOwnProperty("embedding"))
? data.map((embd) => embd.embedding)
: null;
}
}
module.exports = {
AzureOpenAi,
};